CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2014/2015

COURSE NAME	$:$ DATA ANALYSIS
COURSE CODE	$:$ BWA 21003
PROGRAMME	$:$ BWA
EXAMINATION DATE	$:$ JUNE 2015/JULY 2015
DURATION	$: 3$ HOURS
INSTRUCTION	$:$ ANSWER ALL QUESTIONS

Q1 (a) Explain two differences between primary data and secondary data.
(4 marks)
(b) List 5 steps of statistical analysis.
(c) Given the SPSS output of ' $m p g$ ' as presented in Table Q1(c) below.

Table Q1(c) Descriptive summary of ' mpg '

		Statistic	Std. Error
mpg	Mean	20.9231	.93302
	95\% Confidence	Lower Bound	19.0015
	Interval for Mean	Upper Bound	22.8447
		20.6026	
	M\% Trimmed Mean		21.0000
Median	22.634		
Variance	4.75750		
Std. Deviation	14.00		
Minimum	35.00		
Maximum	21.00		
Range	6.25		
Interquartile Range	.935	.456	
Skewness	1.793	.887	

(i) Interpet the skewness of ' $m p g$ '.
(ii) Describe the pattern of kurtosis.
(iii) Interpret the 95% confidence interval of mean.
(d) Analyse the box plot in Figure Q1(d). Do the diagnostic checking and give your recommendations.

Figure Q1(d) Box Plot of 'mpg'

Q2 (a) In testing the hypotheses $H_{0}: \beta_{1}=0$ and $H_{1}: \beta_{1} \neq 0$, both F-test and t-test can be used. Show that both tests are algebraically equivalent.
(b) Verify that the total sum of squares (SST) is a decomposition of error sum of squares (SSE) and regression sum of squares (SSR) by showing that the left hand side of the following equation is the same as the right hand side.

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \\
& {\left[\text { Hint: } \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left[\left(\hat{Y}_{i}-\bar{Y}\right)+\left(Y_{i}-\hat{Y}_{i}\right)\right]^{2}\right]}
\end{aligned}
$$

(6 marks)
(c) A study was conducted to determine the relationship between starting salaries (RM thousands) for recent statistics graduates and their grade point averages in the major course. A linear regression model was fitted to the data and the estimates regression function was obtained. Part of the computer output for the above analysis is given below in Table Q2(c):

Table Q2(c) MINITAB computer output

ANOVA						
Model	Sum of Squares	df	Mean Square	F	Sig.	
Regression		1		147.28	.000	
Error	734.9		40.828			
Total	6748.2					

Coefficients

Model	Unstandardized Coefficients		t	Sig.
	β	Std. Error		
Constant	-8.42	3.395	-2.48	0.011
GPA	3.007	0.2477	12.14	0.000

(i) Complete the ANOVA in Table Q2(c).
(ii) Write the estimated regression function.
(iii) Determine the coefficient of determination for the model and interpret its meaning.

CONFIDENTIAL

Q3 (a) Give your comments of the following statements.
(i) Value of R^{2} is close to 1 .
(ii) Value of correlation coefficient is close to zero.
(b) The following table shows the mean speeds of 12 motorcycles and the amount of traffic fines (RM) they pay during a period of a month.

Table Q3(b) Mean speeds and traffic fines

Mean Speed (km/h)	Trafic fines (RM)
100	300
120	350
115	320
112	315
108	310
105	305
116	340
121	360
125	380
118	345
115	320
122	330

Assuming that both mean speeds and the traffic fines are normally distributed.
(i) Obtain the linear regression of the fines against the mean speeds.
(ii) At the signficant level of 0.05 , test the hypothesis that there exists a positive relation of the fines against the mean speeds.
(iii) Find the Pearson correlation coefficient between the mean speeds and fines. Interpet your finding.

CONFIDENTIAL

Q4 (a) A QC engineer is testing a power supply used in producing notebook components. The complete table of observed frequencies is as follows:

Table Q4(a) Frequency table of power supply

Class interval	Observed frequencies O_{i}
$x<4.948$	12
$4.948 \leq x<4.986$	14
$4.946 \leq x<5.014$	12
$5.014 \leq x<5.040$	13
$5.040 \leq x<5.066$	12
$5.066 \leq x<5.094$	11
$5.094 \leq x<5.132$	12
$x \geq 5.132$	14

Test whether the output voltage is adequately described by a normal distribution with mean 5.04 V and standard deviation 0.08 V at a significance level of 0.05 .
(b) Then, the QC engineer took a set of sample data to determine whether the proportions of output of notebook components for two shifts produced by machine A, B and C were the same. The following data were collected:

Table Q4(b) Work shifts and machines

Shift	Machine		
	A	B	C
1	100	120	180
2	120	180	100

Use a 0.05 level of significance to determine if the proportions of components for shift 1 are the same for all three machines.

CONFIDENTIAL

Q5 Three set of five mice were randomly selected to be placed in a standard maze but with different color doors. The response is the time required to complete the maze as seen below. Refer to the SPSS output as given in Appendix 1.

Table Q5 Time required to complete the maze

Colour	Time				
Red	9	11	10	9	15
Green	20	21	23	17	30
Black	6	5	8	14	7

(a) Briefly explain on the normality assumption based on Normal P-P plot of maze time for each different colour doors.
(b) Conduct a test whether the variances are equal by using 0.01 level of significant.
(c) Perform the appropriate analysis to test if there is an effect due to door colours. Then, if there is a difference in the mean times to complete the maze based on the door colours, perform Tukey-Kramer multiple comparison test. Use 0.01 level of significant for both analysis.
(13 marks)

FINAL EXAMINATION

SEMESTER $/$ SESSION	: SEM II / 2014/2015	PROGRAMME	$: 2$ BWA
COURSE	DATA ANALYSIS	COURSE CODE	$:$ BWA 21003

APPENDIX 1(1)

Oneway

Ifest of Homogentity of Variances
Haze Time

Levene Statistic	off	df2	8ig.
.6522	2	12	.5384

ANONA
Maze Time

	Sum of				
Between Groups	2	Squares	Mean Square	F	8ig.
Within Groups	12	565.7333	282.8667	20.0142	.0002
Total	14	735.3300	14.1333		

APPENDIX 1(2)

Post Hoc Tests

Multiphe Companisonts					
Dependent Variable: Maze TimeTukey HSD					
(0)Door Colar (3) Door Color	\qquad	Std. Error	Sig.	99\% Confidence intertal	
				Lower Bound	Upper Bound
Black	- 2.8000	2.3777 23777	. 0012	-198836	-2.9484
Green Red	11.4000	2.3777	4879	-5.6836	11.2836
Black	$14.2000{ }^{\circ}$	2.3777 23717	. 0012	2.9164	19.8836
Black Red	-28000	2.3777	0002	5.7164	22.6838
Green	-14.2000*	23777 23777	4879	-11.2836	5.6838
					. 5.7164

Homogeneous Subsets

Maze Thne

Tukey HSD			
2			
Doar Color	N	Subset for alpha $=.01$	
alack		1	2
Red	5	8.0000	
Green	5	10.8000	
Big.	5		22.2000

means for groups in homogeneous subsets are displayed
a. Uses Harmonic Mean Sample Size $=5.000$

