

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2008/2009

SUBJECT	:	ENGINEERING MATHEMATICS II
CODE	:	BSM 1923
COURSE	:	1 BDD / 2 BDD / 3 BDD / 4 BDD 1 BFF / 2 BFF / 3 BFF / 4 BFF
DATE	:	APRIL 2009

DURATION 3 HOURS :

INSTRUCTION ANSWER ALL QUESTIONS IN PART A : AND THREE (3) QUESTIONS IN PART B

THIS EXAMINATION PAPER CONSISTS OF 7 PAGES

PART A

`.

ŧ

Q1 A periodic function f(x) is defined by

$$f(x) = \begin{cases} 3+x & -\pi \le x < 0, \\ 3 & 0 \le x < \pi, \end{cases}$$
$$f(x) = f(x+2\pi).$$

(a) Sketch the graph of
$$f(x)$$
 over $-3\pi \le x \le 3\pi$.

(3 marks)

(b) Calculate the Fourier coefficient, a_0 .

(4 marks)

(c) Show that

(i)
$$a_n = \frac{1}{n^2 \pi} (1 - \cos n\pi)$$
, and

(ii)
$$b_n = -\frac{\cos n\pi}{n}$$
,

for n = 1, 2, 3, ...

(10 marks)

(d) Hence, determine a Fourier series expansion for f(x).

(3 marks)

Q2 A rod of length π m is fully insulated along its sides and its ends are dipped into ice and held at a temperature of 0°C. At t = 0, it has an initial temperature $x(\pi - x)$ °C. This heat problem is expressed by

$$\frac{\partial u}{\partial t} = 3 \frac{\partial^2 u}{\partial t^2},$$

where u(x,t) is the temperature of the rod at a distance x m from one end at time t seconds.

(a) Complete the formulation of the heat problem by filling in the blanks below.

Heat Equation:	$\frac{\partial u}{\partial t} = 3 \frac{\partial^2 u}{\partial t^2},$	$(0 < x < \pi, t > 0),$
Boundary Conditions:	$u(0,t) = \underline{\qquad},$	$u(\pi,t) = $, (t > 0),
Initial Condition:	u(x,0) = ,	$(0 < x < \pi).$ (4 marks)

(b) (i) Show that the solution to the heat problem is

$$u(x,t) = D_n(\sin nx)e^{-3n^2t}$$

where D_n and n are arbitrary constants.

(ii) Also, show that its general solution is

$$u(x,t)=\sum_{n=1}^{\infty}D_n(\sin nx)e^{-3n^2t}.$$

(6 marks)

(c) After applying the initial condition to u(x,t), D_n can be evaluated by using

$$D_n = \frac{2}{\ell} \int_0^\ell x(\pi - x) \sin\left(\frac{n\pi x}{\ell}\right) dx,$$

where ℓ is the length of the rod. Show that

$$D_n = \frac{4(1 - \cos n\pi)}{\pi n^3}.$$

. . (5 marks)

(d) Hence, show that

$$u(x,t) = \frac{8}{\pi} \left\{ \frac{(\sin x)e^{-3(1)^2 t}}{1^3} + \frac{(\sin 3x)e^{-3(3)^2 t}}{3^3} + \frac{(\sin 5x)e^{-3(5)^2 t}}{5^3} + \dots \right\}$$

(5 marks)

BSM 1923

PART B

Q3 (a) Given the first order ordinary differential

$$(t-4)y^4dt - t^3(y^2-3)dy = 0.$$

- (i) Show that the differential equation is separable.
- (ii) Hence, solve the equation.

(5 marks)

(b) (i) Show that the differential equation

$$x\frac{dy}{dx} + y = e^{2x}$$

is exact.

(ii) Hence, show that its solution is

$$2xy-e^{2x}=A,$$

where A is an arbitrary constant.

(7 marks)

(c) Solve the following initial value problem,

$$(\cos x)\frac{dy}{dx} + (\sin x)y = 2\cos^3 x \sin(x-1), \quad y\left(\frac{\pi}{4}\right) = 3\sqrt{2}, \quad 0 \le x < \frac{\pi}{2}.$$
(8 marks)

Q4 Given y'' - 4y' + 4y = f(x).

(a) Solve for f(x) = 0.

(3 marks)

(b) Solve for $f(x) = (x+5)^2$ by using the method of undetermined coefficients. (9 marks)

(c) Solve for $f(x) = \frac{x}{e^{-2x}}$ by using the method of variation of parameters. (8 marks)

Q5 (a) Find
$$\mathcal{L}^{-1}\left\{\frac{s+3}{s^2+8s+12}\right\}$$
.

(b) Consider the function

$$f(t) = \begin{cases} e^{3t} & 0 \le t < 1, \\ t - 1 & t \ge 1. \end{cases}$$

(i) Write the function f(x) in the form of unit step functions.

(ii) Then, find the Laplace transform of f(t).

(6 marks)

(5 marks)

(c) Solve
$$y'' + 4y = 8\delta(t - 2\pi)$$
, $y(0) = 3$, $y'(0) = 0$.
(9 marks)

Q6 Given

$$f(x) = \begin{cases} 2x & -3 \le x < 0, \\ -2x & 0 \le x < 3, \end{cases}$$
$$f(x) = f(x+6).$$

(a) Sketch the graph of
$$f(x)$$
 for $-10 \le x \le 10$.

(b) Determine whether f(x) is an odd, even or neither function. Give your reason. (2 marks)

(c) Find the Fourier coefficients; a_0 , a_n , and b_n .

(9 marks)

(3 marks)

(d) Obtain the Fourier series expansion of the periodic function f(x). (3 marks)

(e) Find the value for the series $1 + \frac{1}{9} + \frac{1}{25} + \cdots$ (3 marks)

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2008/2009

COURSE : 1 BDD / 2 BDD / 3BDD / 4 BDD 1 BFF / 2 BFF / 3BFF / 4 BFF CODE : BSM 1923

SUBJECT : ENGINEERING MATHEMATICS II

FORMULA

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

Characteristic equation: $am^2 + bm + c = 0$.				
Case	The roots of characteristic equation	General solution		
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$		
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$		
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$		

The method of undetermined coefficients

For non-homogeneous second order differential equation ay'' + by' + cy = f(x), the particular solution is given by $y_p(x)$:

$f(\mathbf{x})$	$y_p(x)$
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	$x'(B_nx^n+B_{n-1}x^{n-1}+\cdots+B_1x+B_0)$
Ce ^{ax}	$x'(Pe^{\alpha x})$
$C\cos\beta x$ or $C\sin\beta x$	$x'(P\cos\beta x + Q\sin\beta x)$
$P_n(x)e^{\alpha x}$	$x^{r}(B_{n}x^{n}+B_{n-1}x^{n-1}+\cdots+B_{1}x+B_{0})e^{\alpha x}$
$P(x) \int \cos \beta x$	$x^{r}(B_{n}x^{n}+B_{n-1}x^{n-1}+\cdots+B_{1}x+B_{0})\cos\beta x+$
$\int \sin \beta x$	$x^{r}(C_{n}x^{n}+C_{n-1}x^{n-1}+\cdots+C_{1}x+C_{0})\sin\beta x$
$Ce^{\alpha x} \int \cos \beta x$	$x'e^{\alpha x}(P\cos\beta x+Q\sin\beta x)$
$\int \sin \beta x$	
$P(x)e^{\alpha x} \int \cos \beta x$	$x^{r}(B_{n}x^{n}+B_{n-1}x^{n-1}+\cdots+B_{1}x+B_{0})e^{\alpha x}\cos\beta x+$
$\int \sin \beta x$	$x'(C_{n}x^{n}+C_{n-1}x^{n-1}+\cdots+C_{1}x+C_{0})e^{\alpha x}\sin\beta x$

Note : r is the least non-negative integer (r = 0, 1, or 2) which determine such that there is no terms in particular integral $y_p(x)$ corresponds to the complementary function $y_c(x)$.

The method of variation of parameters

If the solution of the homogeneous equation ay'' + by' + cy = 0 is $y_h = Ay_1 + By_2$, then the particular solution for ay'' + by' + cy = f(x) is

$$y = uy_1 + vy_2,$$

where $u = -\int \frac{y_2 f(x)}{aW} dx + A$, $v = \int \frac{y_1 f(x)}{aW} dx + B$ and $W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1$.

BSM 1923 FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2008/2009

.

COURSE : 1 BDD / 2 BDD / 3BDD / 4 BDD 1 BFF / 2 BFF / 3BFF / 4 BFF CODE : BSM 1923

SUBJECT : ENGINEERING MATHEMATICS II

Laplace Transform				
$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$				
f(t)	F(s)	f(t)	F(s)	
A	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$	
e ^{at}	$\frac{1}{s-a}$	f(t-a)H(t-a)	$e^{-as}F(s)$	
sin at	$\frac{a}{s^2+a^2}$	$\delta(t-a)$	e ^{-as}	
cos <i>at</i>	$\frac{s}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$	
sinh at	$\frac{a}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s) \cdot G(s)$	
cosh <i>at</i>	$\frac{s}{s^2-a^2}$	<i>y</i> (<i>t</i>)	Y(s)	
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	y'(t)	sY(s)-y(0)	
$e^{at}f(t)$	F(s-a)	<i>y</i> "(<i>t</i>)	$s^2Y(s) - sy(0) - y'(0)$	
$t^n f(t), n = 1, 2, 3, \dots$	$(-1)^n \frac{d^n}{ds^n} F(s)$			

Fourier Series

Fourier series expansion of periodic	Fourier half-range series expansion
function with period 2L	
$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$	$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$
where	where
$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$	$a_0 = \frac{2}{L} \int_0^L f(x) dx$
$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$	$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$
$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$	$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$