

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2008/2009

SUBJECT : EN	NGINEERING MATHEMATICS II
--------------	---------------------------

- CODE : BSM 1933
- COURSE : 1 BEE / 2 BEE / 3 BEE / 4 BEE
- DATE : APRIL 2009
- DURATION : 3 HOURS
- INSTRUCTION : ANSWER ALL QUESTIONS IN PART A AND THREE (3) QUESTIONS IN PART B

THIS EXAMINATION PAPER CONSISTS OF 7 PAGES

PART A

•

Q1 (a) Obtain the half-range cosine series for

$$f(x) = \pi - x, \ 0 < x < \pi.$$

Expand the first three nonzero terms.

(10 marks)

(b) Using the definition of Fourier transform to find the Fourier transform of the following function.

$$f(t) = \begin{cases} t, & 0 < t < 1\\ 0, & \text{otherwise.} \end{cases}$$
(5 marks)

(c) By using linearity and time shift, calculate the Fourier transform of

$$f(t) = 5e^{-3t}H(t-1) + 7e^{-3(t-2)}H(t-2).$$

[Hint: Time shift for Fourier transform: If $\mathcal{F}{f(t)} = F(\omega)$, then for any constant number a, $\mathcal{F}{f(t-a)} = e^{-i\omega a}F(\omega)$.] (5 marks)

Q2 Given a second order ordinary differential equation

 $y'' - y = e^{2x}.$

Assume that the solution for the differential equation is $y(x) = \sum_{m=0}^{\infty} c_m x^m$.

- (a) Find y'(x) and y''(x). (2 marks)
- (b) Expand the series up to x^3 in each summation, and by comparing coefficients of x^0, x^1, x^2 and x^3 , show that the solution is

$$y(x) = c_0 \left[1 + \frac{x^2}{2} + \frac{x^4}{4!} + \cdots \right] + c_1 \left[x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots \right] + \left[\frac{x^2}{2} + \frac{x^3}{3} + \frac{5x^4}{24} + \frac{x^5}{12} + \cdots \right].$$

[Hint: $e^{2x} = \sum_{m=0}^{\infty} \frac{(2x)^m}{m!}$]
(13 marks)

(c) Given the initial conditions for the differential equation are y(0) = 2 and y'(0) = 6. Find the particular series solution.

(5 marks)

PART B

Q3 (a)

Using the substitutions x = X + 3 and y = Y - 1, show that the equation $\frac{dy}{dx} = \frac{2x - 3y - 9}{3x + 5y - 4}$

can be reduced to a homogeneous equation. Hence, find the solution of the original equation.

(13 marks)

(b) Given the *R*-*L* circuit with source of emf, E(t) as in Figure Q3 (b) below.

Figure Q3 (b)

The circuit has inductance L = 5 H, resistance $R = 15 \Omega$, electromotive force E(t) = 10 V and i(t) A is the current flowing in the circuit. The initial current is i_0 .

(i) Show that the mathematical model for the *R*-*L* circuit is given by

$$\frac{di(t)}{dt} + 3i(t) = 2.$$

(ii) Find the current, i(t), flowing in the circuit at time t.

(7 marks)

Q4 Given a *LC*-circuit in Figure Q4 with L = 4 H, C = 0.01 F, which is connected to a source of voltage $E(t) = 400 \sin 5t$ V.

Figure Q4

(a) Show that the *LC*-circuit can be modelled by $i'' + 25 i = 500 \cos 5t$.

(3 marks)

(b) Find the general solution to the second-order differential equation in (a).

(10 marks)

(c) Given when t = 0, the charge, q(0) = -1, show that i'(0) = 25.

(2 marks)

(d) Find the particular solution to the second-order differential equation in (a) if the current is zero when t = 0.

(5 marks)

Q5 Given the network circuit in **Figure Q5** below.

Q6

(a) Show that the network circuit can be modeled by the following system of first-order differential equation

$$\binom{i_1'}{i_2'} = \binom{-5}{-2} \binom{2}{i_1} \binom{i_1}{i_2} + \binom{100\sin(2t)}{40\sin(2t)}.$$
(4 marks)

(b) Find the general solution to the above system of first-order differential equation by using method of undetermined coefficients.

(16 marks)

(a) Prove that

$$\mathcal{L}^{-1}\left[\frac{1-e^{-10s}}{(3s+1)(s+1)}\right] = \left[\frac{1}{2}e^{-\frac{1}{3}t} - \frac{1}{2}e^{-t}\right] - \left[\frac{1}{2}e^{-\frac{1}{3}(t-10)} - \frac{1}{2}e^{-(t-10)}\right]H(t-10).$$
(10 marks)

(b) Figure Q6 (b) below shows an *RLC* circuit with L = 3 H, $R = 4 \Omega$, and C = 1 F which is initially at rest. A power source of 5V is applied to the circuit for the first 10 seconds. After 10 seconds, the power source is removed.

Figure Q6 (b)

(i) Show the *RLC* circuit can be governed by

. •

с — х 2 х

$$3\frac{di}{dt} + 4i + \int_0^t i(\tau) d\tau = 5[1 - H(t - 10)].$$

(ii) Using the answer in Q6 (a), find the current i(t) in the circuit at any time t.

(10 marks)

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2008/2009

COURSE : 1 BEE / 2 BEE / 3 BEE / 4 BEE

SUBJECT : ENGINERRING MATHEMATICS II

CODE : BSM 1933

Formulae

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

Chara	cteristic equation: $am^2 + bm + c = 0.$	
Case	The roots of characteristic equation	General solution
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$

The method of undetermined coefficients for system of first order linear differential equations For non-homogeneous for system of first order linear differential equations Y'(x) = A Y(x) + G(x), the particular solution $Y_n(x)$ is given by:

$\mathbf{G}(\mathbf{x})$	$\mathbf{Y}_{p}(\mathbf{x})$	$\mathbf{G}(\mathbf{x})$	$\mathbf{Y}_p(\mathbf{x})$
u	a	$\mathbf{u}e^{\lambda x}$	$\mathbf{a}e^{\lambda x}$
$\mathbf{u}x + \mathbf{v}$	ax+b	$\mathbf{u}\cos\alpha x$ or $\mathbf{u}\sin\alpha x$	$\mathbf{a}\sin\alpha x + \mathbf{b}\cos\alpha x$

Laplace Transform					
$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$					
f(t)	F(s)	f(t)	F(s)		
а	$\frac{a}{s}$	$\int_0^t f(\tau)d\tau$	$\frac{F(s)}{s}$		
e ^{at}	$\frac{1}{s-a}$	H(t-a)	$\frac{e^{-as}}{s}$		
sin at	$\frac{a}{s^2 + a^2}$	f(t-a)H(t-a)	$e^{-as}F(s)$		
cosat	$\frac{s}{s^2 + a^2}$	$\delta(t-a)$	e ^{-as}		
sinh at	$\frac{a}{s^2 - a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$		
cosh at	$\frac{s}{s^2-a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s) \cdot G(s)$		
$t^n, n = 1, 2, 3, \dots$	$\frac{n!}{s^{n+1}}$	<i>y</i> (<i>t</i>)	Y(s)		
$e^{at}f(t)$	F(s-a)	<i>y</i> '(<i>t</i>)	sY(s)-y(0)		
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$	y"(t)	$s^2Y(s)-sy(0)-y'(0)$		

BSM 1933

••

FINAL FXAMINATION					
	SEMESTER / SESS	ION: SEM II / 2008/2009	COURSE : 1 BEE / 2 BEI	E / 3 BEE / 4 BEE	
	SUBJECT : ENGIN	ERRING MATHEMATICS II	CODE : BSM 1933		
		Electrical	Formula		
1.	Voltage drop ac	top across resistor, R (Ohm's Law): $v_R = iR$			
2.	Voltage drop across inductor, L (Faraday's Law): $v_L = L \frac{di}{dt}$				
3.	3. Voltage drop across capacitor, C (Coulomb's Law): $v_C = \frac{q}{C}$ or $i = C \frac{dv_C}{dt}$			$i = C \frac{dv_C}{dt}$	
4.	4. The relation between current, <i>i</i> and charge, <i>q</i> : $i = \frac{dq}{dt}$.				
-		Fourier	Series		
Fou	rier series expans	ion of periodic function	Half Range series		
with period $2L/2\pi$			$a_0 = \frac{2}{2} \int_{-\infty}^{L} f(x) dx$		
$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$		L^{JU}			
		$a_n = \frac{L}{L} \int_0^L f(x) \cos \frac{\pi \lambda x}{L} dx$	<i>tx</i>		
$\left \left a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{\pi A x}{L} dx \right \right $		$L = \frac{2}{2} \int_{-L}^{L} f(x) \sin n\pi x dx$	r		
$ \int_{-\infty}^{\infty} \int_{-\infty}^{L} f(x) \sin \frac{n\pi x}{2} dx $		$b_n = \frac{1}{L} \int_0^{\infty} f(x) \sin \frac{1}{L} dx$			
$\int_{-\infty}^{\infty} \frac{1}{L} \int_{-L}^{\infty} f(x) \sin \frac{1}{L} dx$ $f(x) = \frac{1}{2} a_0 + \sum_{n=0}^{\infty} a_n \cos \frac{n\pi x}{2} + \sum_{n=0}^{\infty} b_n \sin \frac{n\pi x}{2}$		$\int f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$			
	$ \begin{array}{c} \int \left(\lambda \right)^{-} 2^{u_0} + \sum_{n=1}^{u_n} \left(\lambda \right)^{-} L \\ n=1 \end{array} \begin{array}{c} \sum_{n=1}^{n-1} L \\ n=1 \end{array} $				
Table of Fourier Transform $F\{f(t)\} = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$					
	f(t)	$F(\omega)$	f(t)	$F(\omega)$	
	$\delta(t)$	1	sgn(t)	2	
			II(4)	<i>i</i> @1	
	$\delta(t-\omega_0)$	$e^{-i\omega_0\omega}$	H(I)	$\pi\delta(\omega) + \frac{1}{i\omega}$	
	1	2πδ(ω)	$e^{-\omega_0 t}H(t)$ for $\omega_0 > 0$	$\frac{1}{\omega_0 + i\omega}$	
	e ^{iæ} ot	$2\pi\delta(\omega-\omega_0)$	$t^n e^{-\omega_0 t} H(t)$ for $\omega_0 > 0$	$\frac{n!}{\left(\omega_0+i\omega\right)^{n+1}}$	
	$\sin(\omega_0 t)$	$i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$e^{-at}\sin(\omega_0 t)H(t)$ for $a > 0$	$\frac{\omega_0}{\left(a+i\omega\right)^2+\omega_0^2}$	
	$\cos(\omega_0 t)$	$\pi \big[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \big]$	$e^{-at}\cos(\omega_0 t)H(t)$ for $a > 0$	$\frac{a+i\omega}{(a+i\omega)^2+\omega_0^2}$	
	$\sin(\omega_0 t)H(t)$	$\frac{\pi}{2}i[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)$	$\left[\right] + \frac{\omega_0}{\omega_0^2 - \omega^2}$		
	$\cos(\omega_0 t)H(t)$	$\frac{\pi}{2} \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right]$	$\left[+ \frac{i\omega}{\omega_0^2 - \omega^2} \right]$		

ı