

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2008/2009

SUBJECT: ENGINEERING MATHEMATICS III

CODE : BSM 2913

COURSE : 2 BDD / BDI / BEE / BEI / BFF / BFI

DATE : APRIL 2009

DURATION : 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS IN PART A

AND THREE (3) QUESTIONS IN PART B

THIS EXAMINATION PAPER CONSISTS OF 6 PAGES

PART A

Q1 (a) Given the force field

$$\mathbf{F}(x, y, z) = e^{y} \mathbf{i} + xe^{y} \mathbf{j} + 0\mathbf{k}.$$

- (i) Prove that F is conservative.
- (ii) Find its scalar potential function $\phi(x, y, z)$ such that $\mathbf{F} = \nabla \phi$.
- (iii) Hence, calculate the amount of work done by F(x, y, z) in moving a particle from the point (1, 0, 0) to (-1, 0, 0).

(12 marks)

(b) Use Green's Theorem to evaluate the line integral $\int_C (x+y)dx + (3y+y^2-x^2)dy$, where C is the triangle with vertices (0,0), (2,0) and (2,4) oriented in a counter clock-clockwise direction.

(8 marks)

Q2 (a) Use Divergence Theorem to find the outward flux

of the vector field $\mathbf{F}(x, y, z) = (x^3 - e^y)\mathbf{i} + (y^3 + \sin z)\mathbf{j} + (z^3 - xy)\mathbf{k}$, across the surface σ of the region that is enclosed by the hemisphere $z = \sqrt{4 - x^2 - y^2}$ and the xy - plane.

[Hint: Use spherical coordinates.]

(10 marks)

(b) Use Stokes' Theorem to evaluate

$$\iint_{\sigma} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ dS,$$

where $\mathbf{F}(x,y,z) = 2z\mathbf{i} + 3x\mathbf{j} + 5y\mathbf{k}$ and σ is the portion of the paraboloid $z = 4 - x^2 - y^2$ above the xy-plane with \mathbf{n} the outward unit normal vector field to σ .

(10 marks)

PART B

Q3 (a) Show that the function $f(x,t) = \sin(n\pi x)\cos(n\pi ct)$ satisfies the wave equation $c^2 \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial t^2}$ for any positive integer n and any constant c.

(5 marks)

(b) Given the function $f(x,\theta) = x^2 e^{rx\theta}$. Find $\frac{\partial^2 f}{\partial x \partial \theta}$ where r is a constant.

(2 marks)

(c) Given $z = \ln(1+xy)$. By using total differential, approximate $\ln(1+(-0.09)(1.98))$ as (x,y) moves from the point (0,2) to the point (-0.09,1.98).

(4 marks)

- (d) Find the local extrema and saddle point(s) of $f(x, y) = 4xy (x^4 + y^4)$. (9 marks)
- Q4 (a) Given $\int_{-3}^{0} \int_{0}^{\sqrt{9-x^2}} \frac{x^2y}{x^2+y^2} dy dx$. Evaluate the integral by using polar coordinates. (5 marks)
 - (b) Find the mass of the solid bounded by the cylinder $x^2 + y^2 = 49$ and the plane z = 6 in the first octant with the density function

$$\delta(x, y, z) = \frac{4}{(1 + x^2 + y^2)^3}.$$
(6 marks)

(d) Let G be the solid in the first octant bounded by the two spheres $x^2 + y^2 + z^2 = 16$ and $x^2 + y^2 + z^2 = 1$. Sketch the region G and then by using spherical coordinates, evaluate

$$\iiint\limits_G \frac{z}{x^2 + y^2 + z^2} dV.$$
 (9 marks)

- Q5 (a) Sketch the graph for the following vector-valued functions.
 - (i) $\mathbf{r}(t) = (3+2t)\mathbf{i} + (5-3t)\mathbf{j} + (2-4t)\mathbf{k}, \ t \in \Re$.
 - (ii) $\mathbf{r}(t) = \frac{1}{2}t \, \mathbf{i} + \cos 3t \, \mathbf{j} + \sin 3t \, \mathbf{k}, \ 0 \le t \le 2\pi$

(4 marks)

(b) Find the vector equation of the line which is tangent to the curve

$$\mathbf{r}(t) = t^2 \mathbf{i} - \frac{1}{t+1} \mathbf{j} + (4-t^2) \mathbf{k}, \quad t \neq -1$$

at the point (4, 1, 0).

(4 marks)

(c) Suppose that a particle moves along a circular helix such that its position vector at time t is

$$\mathbf{r}(t) = (4\cos\pi t)\mathbf{i} + (4\sin\pi t)\mathbf{j} + t\mathbf{k}.$$

Find its speed when t=2 and the distance travelled of the particle during the time interval $1 \le t \le 5$.

(3 marks)

- (d) Find the curvature $\kappa(t)$ for the curves
 - (i) $\mathbf{r}(t) = t\mathbf{i} + at^2\mathbf{j} + 0\mathbf{k}.$
 - (ii) $r(t) = a \sin t i + a(1 \cos t) j + 0k$.
 - (iii) If both the curves coincide and have the same curvature when t = 0, find the value of a.

(9 marks)

Q6 (a) Find a unit vector in the direction in which the function

$$f(x,y) = \frac{1}{x} + \frac{1}{y}$$

increases most rapidly at P(-1,1,0) and find the rate of change of f in that direction.

(5 marks)

(b) Evaluate the following line integral

$$\int_C x^2 dx + xy dy + z^2 dz,$$

where C is a parametric curve defined by $C: x = \sin t$, $y = \cos t$, $z = t^2$, $0 \le t \le \frac{\pi}{2}$.

(5 marks)

(c) Find the centroid of the surface σ , where σ is the portion of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the plane z = 1.

Hint: Centroid of a surface
$$\sigma$$
 is defined by
$$\overline{x} = \frac{\iint x \, dS}{\text{area of } \sigma}, \quad \overline{y} = \frac{\iint y \, dS}{\text{area of } \sigma}, \quad \overline{z} = \frac{\iint z \, dS}{\text{area of } \sigma}.$$

(10 marks)

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2008/2009

COURSE: 2 BDD / BDI / BEE / BEI / BFF /BFI

SUBJECT: ENGINEERING MATHEMATICS III

CODE : BSM 2913

Formulae

Polar coordinates:

$$x = r \cos \theta$$
, $y = r \sin \theta$ and $x^2 + y^2 = r^2$
$$\iint_R f(x, y) dA = \iint_R f(r, \theta) r dr d\theta$$

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$ and $x^2 + y^2 = r^2$

Cylindrical coordinates:
$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$ and $x^2 + y^2 = r^2$

$$\iiint_G f(x, y, z) \ dV = \iiint_G f(r, \theta, z) \ r \ dz \ dr \ d\theta$$

Spherical coordinates:
$$x = \rho \cos \theta \sin \phi$$
, $y = \rho \sin \theta \sin \phi$, $z = \rho \cos \phi$, $\rho^2 = x^2 + y^2 + z^2$,

 $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$

$$\iiint_G f(x,y,z) \ dV = \iiint_G f(\rho,\phi,\theta) \rho^2 \sin\phi \ d\rho \ d\phi \ d\theta$$

The directional derivatives, $D_{\mathbf{u}}f(x,y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot \mathbf{u}$; The gradient of $\phi = \nabla \phi$

Let $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is vector field, then

The divergence of
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$$

The curl of
$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}$$

Let C is smooth curve given by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$.

The unit tangent vector,
$$T(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

The principal unit normal vector,
$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

Curvature,
$$\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$$

Green Theorem:

$$\oint_C M \ dx + N \ dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$$

Gauss Theorem:

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dS = \iiint_{G} \nabla \cdot \mathbf{F} \ dV$$

$$\iint\limits_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ dS = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2008/2009

COURSE: 2 BDD / BDI / BEE / BEI / BFF /BFI

SUBJECT: ENGINEERING MATHEMATICS III

CODE : BSM 2913

Arc Length of Plane Curve and Space Curve

For a plane curve, $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$ on an interval [a,b], the arc length

$$s = \int_a^b \|\mathbf{r}'(t)\| dt = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt.$$

For a space curve, $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ on an interval [a,b], the arc length

$$s = \int_a^b \|\mathbf{r}'(t)\| dt = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt.$$