

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2008/2009**

CODE BSM 3913 \mathcal{L}^{max}

COURSE 2 BFA / BFB / BFF / BFP / BEE / BEM / BET \mathbf{L} 3 BEE / BDD 4 BEE

: **APRIL 2009** DATE

DURATION 3 HOURS \mathcal{L}^{max}

INSTRUCTION \mathcal{L}^{max} ANSWER ALL QUESTIONS IN PART A AND THREE (3) QUESTIONS IN PART B. ALL CALCULATIONS MUST BE IN 3 DECIMAL PLACES.

THIS EXAMINATION PAPER CONSISTS OF 7 PAGES

PART A

Q1 (a) A string is tightly stretched between $x = 0$ and $x = L$ and is initially at rest. Each point of the string is given an initial velocity of

$$
y_t(x,0) = \mu \sin^3\left(\frac{\pi x}{L}\right).
$$

Find numerically the displacement of the string with time $t = 0$ (0.5) 1.0, assuming $y_{tt} = \alpha^2 y_{xx}$, $0 \le x \le L$ by taking $\alpha = 1$, $\mu = 1$, $\Delta x = 0.5$ and $L = 3.0$.

(9 marks)

(b) Given the Poisson's equation

$$
u_{xx}+u_{yy}=8x^2y^2,
$$

with boundary conditions $u(x,0) = u(x,1) = u(0, y) = u(1, y) = 0$ for $0 < x < 1$ and $0 < y < 1$. By taking $\Delta x = \Delta y = 1/3$, use finite-difference method to derive a system of linear equations tbat approximate the solution for the square region. (Do NOT solve the system)

 $(11$ marks)

Q2 Consider the heat flow equation

$$
\frac{d}{dx}\left(A(x) k(x) \frac{dT}{dx}\right) + Q(x) = 0, \text{ for } 2 \le x \le 8
$$

on a fin consisting of four nodes and three elements. In this equation, $T(x)$ is the temperature at length x, $A(x)$ is the cross-sectional area, $k(x)$ is the thermal conductivity and $Q(x)$ is the heat supply per unit time and per unit length.

Given that $A(x) = 20$ unit, $k(x) = 4$ unit and $Q(x) = 50$ unit. The boundary conditions are given as $T_1 = T|_{x=2} = 0$ and $T_4 = T|_{x=8} = 0$.

Find the temperature at each nodal point, $T_2 = T|_{x=4}$ and $T_3 = T|_{x=6}$ by using finite-element method with considering only the first element and assembly technique.

(20 marks)

PART B

A man was found dead from a stabbed wound in his house early in the morning. The police who came to crime scene recorded the body temperature of the decease at 27° C. The temperature of the house is assumed to be uniform at 24 $^{\circ}$ C. Given the mathematical model of the crime as: Q3 (a)

$$
\theta(t) = \theta(0)e^{-kt} + \theta_r(1-e^{-kt})
$$

where:

 $\theta(t)$ - the body temperature at time, t hours.

 θ . - the temperature in the house.

Let $\theta(0) = 37^{\circ}$ C and $k = 0.154$, estimate how long he has been killed by using

- (i) Newton Raphson Method. Begin the calculation with $t_0 = 0$.
- (ii) Secant Method for the intervals of $[0, 10]$.

(For both methods iterate until $|f(t_i)| < \varepsilon = 0.005$)

Then, if the true time is $t^* = 9.522$ hours. Find the absolute errors for both methods. (13 marks)

Given (b)

 $2x_1 + 5x_2 + 2x_3 = 8$ $5x_1 + 2x_2 = -2$ $2x_2 + 5x_3 = 3$

By taking initial guess as $x^{(0)} = (-1.220 \quad 2.176 \quad -0.270)^T$, solve it by using Gauss-Seidel iteration method and iterate until max $\{|x_i^{(k+1)} - x_i^{(k)}|\} < \varepsilon = 0.005$.

(7 marks)

A car traveling along a rural highway has been clocked at a number of points. The data from the observations are given in the Table 1, where the time is in seconds, s and the distance is in metre, m . Q4 (a)

Time, t			
Distance, d			
		Table .	

Observation of a car traveling along a rural highway

Use Newton divided difference method to predict the position of the car when $t=10s$.

(6 marks)

Construct the natural cubic spline for the points (4,2), (9,3) and (16,4). Hence, find the approximation of $f(7)$ and $f(14)$. (b)

(10 marks)

- (c) Given $f(x) = \sqrt{\cot x}$. Find the approximate value(s) of $f'(0.05)$ with $h = 0.01$ by using
	- (i) $2 point$ backward difference formula,

	(ii) $3 point$ central difference formula,

	(iii) $3 point$ forward difference formula.
	-
	- (iii) $3 point$ forward difference formula,
(iv) $5 point$ difference formula.
	- 5 point difference formula.

Then, find the relative error for each answer if the exact answer is -44.777 .

(4 marks)

- $Q5$ (a) Suppose that the age in days of a type of single-celled organism can be expressed as $f(x) = (\ln 2)e^{-x}$ where $k = \frac{1}{2}\ln 2$ and the domain is $0 \le x \le 2$. Given that mean = $\mu = \int_0^2 f(x) dx$, find the mean age of the cells by using
	- (i) $1/3$ Simpson method with $h = 0.2$.
	- (ii) 2-point Gauss quadrature.

(10 marks)

Solve $v'v^2 = x^2 + 7x + 3$ at $x = 0(0.2)$ l by Euler's method with initial condition $y(0) = 3$. (b)

(4 marks)

Given the boundary value problem $x'' + 4x = \sin t$, $0 \le t \le 1$, with condition $x(0) = 0$ and $x(1) = 0$. Derive the system of linear equations (in matrix-vector form) using finite difference method by taking $\Delta t = h = 0.25$. (c)

(6 marks

Q6 (a) Given that the dominant eigenvalue, $\lambda_{l_{\text{argest}}}$, is 13.262, find the smallest (in absolute) eigenvalue for matrix A below using shifted power method.

$$
A = \begin{pmatrix} 8 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 13 \end{pmatrix}.
$$
 Use $v^{(0)} = (1 \ 1 \ 1)^T$.

(9 marks)

(b) Given the heat equation

$$
\frac{\partial u}{\partial t}=0.5\frac{\partial^2 u}{\partial x^2},\quad 00\,,
$$

with boundary conditions, $u(0,t) = 20e^{-t}$ and $u(1,t) = 60e^{-2t}$ for $t > 0$ and initial condition $u(x,0) = 20 + 40x$ for $0 \le x \le 1$. By using implicit Crank-Nicolson method, solve the heat equation at first level only for $t \le 0.1$ by taking $\Delta x = h = 0.25$, and $\Delta t = k = 0.1$ using your calculator.

(l I marks)

FINAL EXAMINATION

SUBJECT : MATHEMATICS ENGINEERING IV CODE : BSM 3913

SEMESTER / SESSION: SEM II / 2008/2009 COURSE: 2 BFA / BFB / BFF / BFP / BEE / BEM / BET / 3 BEE / BDD / 4 BEE

Fomulae

Nonlinear equations

Secant method:
$$
x_{i+2} = \frac{x_i f(x_{i+1}) - x_{i+1} f(x_i)}{f(x_{i+1}) - f(x_i)}, i = 0, 1, 2, ...
$$

Newton-Raphson method : $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$, $i = 0,1,2,..$

System of linear equations

 $b_i - \sum a_{ij}x_i^{(k+1)} - \sum a_{ij}x_i^{(k)}$ Gauss-Seidel iteration method: $x_i^{(k+1)} = \frac{a_i}{\frac{1}{k} + \frac{1}{k} + \frac{1}{k} + \cdots}$, $i = 1, 2, ..., n$

Interpolation

Newton divided difference:

$$
P_n(x) = f_0^{[0]} + f_0^{[1]}(x - x_0) + f_0^{[2]}(x - x_0)(x - x_1) + ... + f_0^{[n]}(x - x_0)(x - x_1)...(x - x_{n-1})
$$

Cubic spline:

$$
S_k(x) = \frac{m_k}{6h_k}(x_{k+1} - x)^3 + \frac{m_{k+1}}{6h_k}(x - x_k)^3 + \left(\frac{f_k}{h_k} - \frac{m_k}{6}h_k\right)(x_{k+1} - x) + \left(\frac{f_{k+1}}{h_k} - \frac{m_{k+1}}{6}h_k\right)(x - x_k)
$$

\n
$$
h_k = x_{k+1} - x_k
$$

\n
$$
d_k = \frac{f_{k+1} - f_k}{h_k}, k = 0, 1, 2, ..., n-2
$$

\n
$$
b_k = 6(d_{k+1} - d_k), k = 0, 1, 2, ..., n-2
$$

Natural cubic spline : $m_{0} = 0$ $m_n = 0$ $h_k m_k + 2(h_k + h_{k+1})m_{k+1} + h_{k+1}m_{k+2} = b_k, \quad k = 0,1,2,\ldots, n - 2$

Numerical differentiation and integration

Differentiation:

First derivatives:

2-point forward difference: $f'(x) \approx \frac{f(x+h)-f(x)}{h}$ 2-point backward difference: $f'(x) \approx \frac{f(x) - f(x - h)}{h}$

FINAL EXAMINATION

Integration:

$$
\frac{1}{3} \text{ Simpson's rule: } \int_a^b f(x)dx \approx \frac{h}{3} \left[f_0 + f_n + 4 \sum_{\substack{i=1 \ i \text{ odd}}}^{n-1} f_i + 2 \sum_{\substack{i=2 \ i \text{ even}}}^{n-2} f_i \right]
$$

Gauss quadrature: For $\int_a^b f(x)dx$, $x = \frac{(b-a)t + (b+a)}{2}$
2-points: $\int_{-1}^1 f(x)dx \approx g\left(-\frac{1}{\sqrt{3}}\right) + g\left(\frac{1}{\sqrt{3}}\right)$

Eigen value

Power Method : $v^{(k+1)} = \frac{1}{m_{k+1}} A v^{(k)}$, $k = 0,1,2,...$

Shifted Power Method: $\mathbf{A}_{\text{shifted}} = \mathbf{A} - s\mathbf{I}$, $\lambda_{\text{smallest}} = \lambda_{\text{Shifted}} + s$

Ordinary differential equations

Initial value problems: Euler's method: $y(x_{i+1}) = y(x_i) + hy'(x_i)$

Boundary value problems:

Finite difference method:

$$
y'_{i} \approx \frac{y_{i+1} - y_{i-1}}{2h}
$$

$$
y''_{i} \approx \frac{y_{i+1} - 2y_{i} + y_{i-1}}{h^{2}}
$$

Partial differential equations

Heat equation- Implicit Crank-Nicolson:

$$
\left(\frac{\partial u}{\partial t}\right)_{i,j+\frac{1}{2}} = \left(c^2 \frac{\partial^2 u}{\partial x^2}\right)_{i,j+\frac{1}{2}} \qquad \frac{u_{i,j+1} - u_{i,j}}{k} = \frac{c^2}{2} \left(\frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{h^2} + \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}\right)
$$

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2008/2009 COURSE: 2 BFA / BFB / BFF / BFP / BEE / BEM / BET / 3 BEE / BDD / 4 BEE

SUBJECT : MATHEMATICS ENGINEERING IV CODE : BSM 3913

Wave equation- Finite difference method:

$$
\left(\frac{\partial^2 u}{\partial t^2}\right)_{i,j} = \left(c^2 \frac{\partial^2 u}{\partial x^2}\right)_{i,j} \qquad \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2} = c^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}
$$

Poisson equation-Finite difference method

$$
\left(\frac{\partial^2 u}{\partial x^2}\right)_{i,j} + \left(\frac{\partial^2 u}{\partial y^2}\right)_{i,j} = f_{i,j} \qquad \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2} = f_{i,j}
$$

Finite element method

Heat flow problem in 1 dimension for $p \le x \le q$

 $N(x) = [N_1(x) N_2(x) \cdots N_n(x)]$ $N_m(x) = N_m^e(x)$ is global shaped function for element e at node m $\lfloor \frac{1}{2} \rfloor$ $T = \begin{bmatrix} T_2 \\ \vdots \end{bmatrix}$, is the temperature vector at node $\left[T_n\right]$ $KT = F_h - F_l$

where

stiffness matrix, $\mathbf{K} = \int_{b}^{q} \mathbf{B}^{T} A k \mathbf{B} dx$ or

 $K_{ij} = \int_{R}^{q} A(x)k(x) \frac{dN_i}{dx} \frac{dN_j}{dx} dx$ is a square matrix with dimension $n \times n$,

boundary vector, $\mathbf{F}_b = \left[N_t A(x) k(x) \frac{dT}{dx} \right]_0^q$ have the dimension $n \times 1$,

load vector, $\mathbf{F}_{\text{L}} = -\int_{p}^{q} \mathbf{N}_{i} Q(x) dx$ have the dimension $n \times 1$.