

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2015/2016

COURSE NAME
COURSE CODE
PROGRAMME
EXAMINATION DATE
DURATION
INSTRUCTION

- : CIRCUIT THEORY
- : DAE 11103
- : 1 DAE
- : JUNE / JULY 2016
- : 3 HOURS

: PART A ANSWER ALL QUESTIONS

PART B ANSWER **TWO (2)** QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

RAUJAH BTE ABUULAH Keiva Jabatun Jahatan Kajaruturana Blautiti Punar Pasgejian Dipisma Universiti Tun Hussoin Ora Malavela

PART A

Q1 (a) For the network shown in Figure Q1(a), determine the supply current, I and the source voltage, E.

(10 marks)

(b) The current entering the positive terminal of a device is $i(t) = 6e^{-2t}$ mA and the voltage across the device is $v(t) = 10\frac{di}{dt}$ V.

- (i) Find the charge delivered to the device between t = 0 and t = 2 s.
- (ii) Calculate the power absorbed.
- (iii) Determine the energy absorbed in 3 s.

(10 marks)

(10 marks)

(10 marks)

Q2 Find the current i_0 in the circuit shown in Figure Q2 using

- (a) Nodal analysis
- (b) Mesh analysis

Q3 (a) Use a series of source transformations to find the voltage v in the circuit shown in Figure Q3(a).

(6 marks)

- (b) For the circuit shown in **Figure Q3(b)**,
 - (i) Use the principle of superposition to find the voltage v.
 - (ii) Find the power dissipated in the 10 Ω resistor.

(7 marks)

- (c) For the circuit shown in **Figure Q3(c)**,
 - (i) Find the value of R_L that results in maximum power being transferred to R_L .
 - (ii) Calculate the maximum power that can be delivered to R_L .

(7 marks)

CONFIDENTIAL

DAE 11103

PART B

Q4 (a) Determine the equivalent inductance, L_{eq} seen from terminal *a*-*b* in Figure Q4(a).

(4 marks)

(b) Under steady-state dc conditions, find i_L , v_C and the energy stored in the capacitor and inductor in the circuit in Figure Q4(b).

(6 marks)

- (c) The switch in the circuit shown in Figure Q4(c) has been in position a for a long time. At t = 0, the switch moves instantaneously to position b.
 - (i) Find the numerical expression for $i_0(t)$ when $t \ge 0$
 - (ii) Find the numerical expression for $v_0(t)$ for $t \ge 0^+$

(10 marks)

Q5 (a) Use the concept of the phasor to combine the following sinusoidal functions into a single trigonometric expression:

(i)
$$y = 100 \cos(300t + 45^\circ) + 500 \cos(300t - 60^\circ)$$

(ii) $y = 250 \cos(377t + 30^\circ) - 150 \sin(377t + 140^\circ)$

(b) Determine the instantaneous voltage across a 2 μ F capacitor when the current through it is, $i = 4 \sin(10^6 t + 25^\circ) A$.

(4 marks)

(6 marks)

- (c) A 20 Ω resistor is connected in parallel with a 5 mH inductor. This parallel combination is connected in series with a 5 Ω resistor and a 25 μ F capacitor. This interconnection is energized by a sinusoidal voltage source whose voltage is $v = 150 \cos 4000t V$.
 - (i) Calculate the impedance of this interconnection.
 - (ii) Find the steady-state expression of the current in the 5 mH inductor.

(10 marks)

CONFIDENTIAL

DAE 11103

Q6 (a) Given the circuit in Figure Q6(a), find the average power supplied or absorbed by each element.

(10 marks)

- (b) A 110-V rms, 60-Hz source is applied to a load impedance Z. The apparent power entering the load is 120 VA at a power factor of 0.707 lagging.
 - (i) Calculate the complex power.
 - (ii) Find the rms current supplied to the load.
 - (iii) Determine Z.
 - (iv) Assuming that $Z = R + j\omega L$, find the values of R and L.

(10 marks)

- END OF QUESTION -

CONFIDENTIAL

CONFIDENTIAL DAE 11103

CONFIDENTIAL

6

CONFIDENTIAL

SEMESTER/SESSION: SEM II/2015/2016 COURSE NAME : CIRCUIT THEORY PROGRAMME : 1 DAE COURSE CODE : DAE 11103

FIGURE Q4(b)

CONFIDENTIAL

CONFIDENTIAL DAE 11103

CONFIDENTIAL