

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2015/2016

COURSE NAME	:	DIGITAL ELECTRONICS
COURSE CODE	:	DAE 21203
PROGRAMME	:	1 DAE
EXAMINATION DATE	:	JUNE / JULY 2016
DURATION	:	2 HOURS 30 MINUTES
INSTRUCTION	:	ANSWER FOUR (4) QUESTIONS
		ONLY

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

MOHD SABANI BIN HJ. MOHD Forgajar Kanan Jabatan Kejunukaraan Elektrik Auset Panyajinn Diploma Jaivonsib, Tun Hussein Onn Malaysia

Q1	(a)	The compact disk (CD) player is an example of a system in which both digital and analog circuits are used. Draw and label clearly the block diagram that represents the basic principles of a CD player	
		(5 marks)	
	(b)	Explain four (4) advantages of digital techniques. (4 marks)	
	(c)	For the timing diagram in Figure Q1(c):	
		(i) Determine the number of cycles displayed of waveform a, b and c. (3 marks)	
		(ii) For the input signal of a, b and c, find the period, frequency and duty cycle	
		(6 marks)	
		(iii) Build the truth table for the timing diagram showing all inputs and output, a, b, c and F.	
		(4 marks)	
	(d)	A pulse waveform with a frequency of 50 kHz is applied to the input of a counter. Determine how many pulses are counted during 100 ms. (3 marks)	
Q2	(a)	 Convert hexadecimal number A3_{hex} to: (i) Binary number system. (ii) Decimal number system. (iii) BCD code (iv) Grav code 	
		(17) Gray code (8 marks)	
	(b)	Given the Boolean expression	
		$Z = \overline{PQ} \cdot (RS + \overline{PS}) \cdot (\overline{PQ} + \overline{RS})$	

(i) Design the logic circuit from the Boolean equation.

2

(ii) Simplify expression Z using Boolean theorem. (5 marks)

(5 marks)

(iii) Implement the function Z in Q2 (b) (ii) using only a 2-input NAND gates.

(7 marks)

CONFIDENTIAL

- Q3. (a) Figure Q3 (a) shows a combinational logic circuit designed to control the operation of a conveyor belt in Factory X.
 - (i) Simplify the Boolean expression for output Y from this combinational logic circuit.

(7 marks)

- (ii) Draw the logic circuit from the simplified expression in Q3(a)(i).(3 marks)
- (b) By using Boolean theorem, prove the following Boolean expressions:

$$\overline{(\overline{A}.\overline{B}.A)}.\overline{(\overline{A}.\overline{B}.B)} = A \bigoplus B$$

(5 marks)

- (c) For the circuit in **Figure Q3(c)**
 - (i) Build the truth table
 - (ii) Write the Boolean expression for the output

(10 marks)

Q4 (a) Find the simple expression for the output Z base on the truth table below

W	Х	Y	Z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

(4 marks)

CONFIDENTIAL

MOHD SABANI EIN HJ, MOHD Pengajar Kanen Juoatan Kejunierran Elektrik Pusat Pengajian Diploma Universiti Tun Huaerin Onn Malaysie

DAE 21203

(b) For the following function:

ŀ	$F(W, X, Y, Z) = \sum (0,5,7,8,10,13,14,15) + d$	(2,3,4)
(i)	Build the truth table	
		(4 marks)
(ii)	Simplify using a Karnaugh map	
		(4 marks)
(iii)	Obtain the minimum sum of product (SOP) expression	
		(2 marks)
(iv)	Implement the simplified expression using basic logic gates	5
		(3 marks)

(c) A combinational logic circuit which has one output Z and four (4) inputs (A,B,C,D) representing binary number. Output Z should be HIGH (1) if the input is at least 5 but not greater than 11.

(i)	Build the truth table	
		(4 marks)
(ii)	Write the minterm expression for the Z	
		(2 marks)
(iii)	Write the maxterm expression for the Z	
		(2 marks)

Q5. (a) Solve the following arithmatics operations. Check the answer with its Decimal equivalent.

- (i) $101_2 + 100_2$
- (ii) $110_2 101_2$
- (iii) $1001_2 \times 1011_2$
- (iv) $+18_{10} 25_{10}$ using 2's complement

(9 marks)

- (b) A word length is 6 bits (including sign bit), change the binary number into decimal in 2's complement.
 - (i) 100001₂
 - (ii) 010001₂

(6 marks)

CONFIDENTIAL

- (c) A full adder has there (3) inputs A, B and C_{in} and two (2) outputs SUM and C_{out}.
 - (i) Produce the truth table for the full adder.
 - (ii) Write the minimum SUM expressin by using Boolean Algebra.
 - (iii) Write the minimum C_{out} expression by using Karnaugh map.

(10 marks)

- **Q6.** (a) Consider a half adder :
 - (i) Draw the logic symbol
 - (ii) Build the truth table showing all the inputs and outputs (SUM and C_{out})
 - (iii) Write the expression for both outputs

(6 marks)

- (b) With the aids of diagrams, describe the function of the following device :
 - (i) A decoder
 - (ii) A encoder

(6 marks)

- (c) Figure Q6(c) is a logic symbol for the 4 bit 7483 parallel adder . Find the sum S and carry output C_{out} for the addition below(assume C_{in} is 0):
 - (i) A1A2A3A4 = 1010 and B1B2B3B4 = 1101
 - (ii) A1A2A3A4 = 1110 and B1B2B3B4 = 0111

(6 marks)

- (d) Design an 8-1 multiplexer using:
 - (i) 4-1 multiplexers
 - (ii) Implement expression $F(X, Y, Z) = \sum m(0, 1, 4, 7)$
 - (iii) implement expression F (X, Y, Z) = $\Pi m (0, 2, 5, 6)$

(7 marks)

- END OF QUESTIONS -

CONFIDENTIAL

.

CONFIDENTIAL

MOHD SABANI BIN HJ, MOHD Pengeler Kanan Jeasian Kejuntersen Elektrik Pusat rengeler Diskome Universiti Tun Huasein Onn Meleysia

* `

CONFIDENTIAL

7

ALL D. SACHER DOLL TO MOUNT FOR THE BOARD OF THE BOARD OF