

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER II SESSION 2019/2020

COURSE NAME	÷	CIVIL ENGINEERING MATHEMATICS III
COURSE CODE	:	BFC 24103
PROGRAMME CODE	:	BFF
EXAMINATION DATE	:	JULY 2020
DURATION		6 HOURS
INSTRUCTION	1	ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

BFC24103

Q1 (a) Solve
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1} - 1}$$
. (6 marks)

(b) Find
$$f_x, f_y, f_{xx}, f_{xy}$$
 for function $f(x, y) = y \tan 2x$.

(c) Evaluate
$$\int_0^1 \int_0^{\sqrt{1-x^2}} x + y \, dy dx$$
 by using polar coordinates.

Q2 (a) Calculate the volume of solid bounded by $y = x^2 + z^2$ and plane y = 3 in first octant by using triple integral.

(5 marks)

(8 marks)

(6 marks)

(b) A cylinder with diameter 12 cm and height 14 cm was used to collect the sample of peat soil. Determine the rate of change in a cylinder if the increasing rate of radius is 0.3 cms⁻¹ and the decreasing rate of height is 0.4 cms⁻¹.

(4 marks)

(c) Given that $r(t) = e^t i + 2\sin t j + 2\cos t k$. Find the velocity and acceleration at $t = \pi$. (6 marks)

(d) Find a parametric equation of the line through the points A (4,5,-3) and B (6,-5,4). (5 marks)

Q3 (a) Solve
$$\int_0^1 \int_x^1 xy^3 dy dx$$
. (5 marks)

(b) The demand equation for a certain brand of face mask for front liners used during MCO is $k = 2xy^2z^3$ where x represents the time of face mask needed to be supplied in a month. The price of the facemask, y is given by the equation $y = x^2 + 1$ with the types of brand face mask, $z = \sqrt{x}$. Determine the quantity of the face mask needed to be supplied in a month, $\frac{dk}{dx}$ using the appropriate rule method.

(5 marks)

(c) Ukur Bina Sdn Bhd is awarded a survey work for Perwira residential apartment. As a surveyor, you are required to conduct surveying to set out the exact position of a proposed structure within the legal boundaries. The setting out works is bounded at y = 2x, $y = \frac{x}{2}$ and x + y = 3. With the aid of reference equations, sketch the bounded boundaries.

(8 marks)

(d) A particle describes a path in which its position vector, r(t), is given a function of time, t, by r(t) = 3t i + 4sint j + 4cost k where i, j and k are three mutually perpendicular unit vectors. Calculate the unit tangent vector, principal unit normal vector and curvature of the particle.

(12 marks)

(6 marks)

Q4 (a) (i) Sketch the region R enclosed between the line $y = \frac{x}{2}$, y = 2x and x + y = 3. (4 marks)

- (ii) Find the area of region R using double integrals.
- (b) Calculate the directional derivatives of functions $f(x, y) = 4x^3y^2$ at point (2,1) in the direction of vector a = 4i 3j. (6 marks)
- (c) Find the line integral using Green's theorem $\oint_C y^3 dx + (x^3 + 3xy^2) dy$ where C is the boundary of circle $x^2 + y^2 = 9$ which oriented counter clockwise.

(14 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2019/2020 COURSE NAME: CIVIL ENGINEERING MATHEMATICS III PROGRAMME CODE: BFF COURSE CODE: BFC24103

Formulae

Tangent Plane: $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

Polar coordinate: $x = r\cos\theta$, $y = r\sin\theta$, $\theta = tan^{-1}(\frac{y}{r})$ and

 $\iint_{R} f(x,y)dA = \iint_{R} f(r,\theta)rdrd\theta$

Cylindrical coordinate: $x = r\cos\theta$, $y = r\sin\theta$, z = z, $\iiint_G f(x, y, z)dV =$ $\iiint_G f(r, \theta, z)d dz dr d\theta$

Spherical coordinate. $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \theta$, $x^2 + y^2 + z^2 - \rho^2$, $0 \ll \theta \ll 2\pi$, $0 \ll \phi \ll \pi$ and $\iiint f(x, y, z)dV = \iiint f(\rho, \phi, \theta)\rho^2 \sin \phi d\rho d\phi d\theta$

Directional derivative: $D_u f(x, y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot u$

Let $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is vector field, then the divergence of $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$ The curl of

$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z}\right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \mathbf{k}$$

Let *C* is a smooth curve given by r(t) = x(t)i + y(t)j + z(t)k, *t* is parameter, then The unit tangent vector; $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$ The unit normal vector: $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$ The binormal vector: $B(t) = T(t) \times N(t)$ The curvature: $K = \frac{\mathbf{T}'(t)}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}' \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$ Green Theorem: $\oint_C M(x, y) \, dx + N(x, y) \, dy = \iint_R \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \, dA$

