

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) **SEMESTER II SESSION 2019/2020**

COURSE NAME

: CIVIL ENGINEERING STATISTICS

COURSE CODE

: BFC 34303

PROGRAMME CODE

: BFF

EXAMINATION DATE : JULY 2020

DURATION

: 6 HOURS

INSTRUCTIONS

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIXTEEN (16) PAGES

- A researcher studied the tensile yield strength of steel. She performed tests on Q1 (a) 20 steel samples and obtained a mean (\bar{X}) of 305 MPa with a standard deviation (s) of 16 MPa. Based on her research, she claimed that the tensile yield strength of steel generally exceeds 300 MPa.
 - Construct a 95% confidence interval for the population mean, (i) assuming that the population is normally distributed.

(5 marks)

Validate the researcher's claim that the tensile yield strength of steel (ii) generally exceeds 300 MPa.

(3 marks)

The permeability rate (in cm/hour) for samples of three different soil mixtures (b) P, Q and R are provided in Table Q1(b). At 0.05 significance level (α), determine if there is a significant difference in the mean permeability rate for the three soil mixtures.

(17 marks)

Use the definition of p-value to explain why the null hypothesis, H_o would be Q2 (a) rejected if p-value = 0.0003.

(3 marks)

- A sample of 40 speedometer readings is calibrated for accuracy at 52 km/h, (b) resulting in a sample mean and sample standard deviation of 53.87 and 1.36, respectively. The data is tested at a 0.05 significance level (α) to see if the true average reading when speed is 52 km/h is in fact something other than 52.
 - State the null hypothesis (H_a) and alternative hypothesis (H_a) . (i) (2 marks)
 - (ii) Calculate the value of the *z*-statistic.

(4 marks)

Determine the *p*-value. (iii)

(4 marks)

State the conclusion of this hypothesis test. (iv)

(1 mark)

To obtain information on the corrosion resistance properties of a certain type (c) of steel, 29 specimens are buried in soil for an extended period. The maximum penetration (in mm) is then measured for each specimen, yielding a sample mean penetration of 1.34 and a sample standard deviation of 0.12. The steels were manufactured with the specification that true average penetration be at most 1.27 mm. The data is tested at a 0.01 significance level (α) to see if the specifications have or have not been met.

> CONFIDENTIAL TERBUK.

		(i)	State the null hypothesis (H_o) and alternative hypothesis	(2 marks)
		(ii)	Calculate the value of the t -statistic.	(4 marks)
		(iii)	Determine the <i>p</i> -value.	(4 marks)
		(iv)	State the conclusion of this hypothesis test.	(1 mark)
Q3	Statis	stics cou	aly selected students took a math aptitude test before the data from the find a relationship between statistics grades and math aptitude.	ne students (see
	(a)	State	the dependent variable (Y) and independent variable (X) .	(1 mark)
	(b)	Using	g simple linear regression, calculate the slope (b) and inter-	cept (a). (12 marks)
	(c)	Write	down the equation that relates variables Y and X .	(2 marks)
	(d)	Deter	mine the coefficient of correlation (r) and comment on the	e value. (4 marks)
	(e)	Deter	rmine the coefficient of determination (R^2) and comment of	n the value. (4 marks)
	(f)		tudent obtained an 80 on the aptitude test, determine the set her to get in statistics.	grade we would (2 marks)
Q4	on a highe	highwa er speed	Tety researcher obtained speed data of light and heavy velocy segment (refer Table Q4). He hypothesised that light velocities than heavy vehicles. You are required to test his hypothesy U Test at a 0.05 significance level (α).	ehicles travel at
	(a)	State	the null hypothesis (H_0) and alternative hypothesis (H_a) .	(4 marks)
	(b)	Sugg	est whether to use a one-tailed test or a two-tailed test.	(2 marks)

CONFIDENTIAL

BFC34303

(c) Determine the critical U value ($U_{critical}$) and specify the criteria for rejection of the null hypothesis.

(6 marks)

(d) Calculate the U test statistic ($U_{calculated}$) and decide whether to reject or accept the null hypothesis. Provide a conclusion based on the result of this test. (13 marks)

- END OF QUESTIONS -

SEMESTER/SESSION : II / 2019/2020

PROGRAMME

COURSE NAME

: CIVIL ENGINEERING

COURSE CODE : BFC 34303

STATISTICS

Table Q1(b): Permeability rate (in cm/hour) for samples of three different soil mixtures

P	Q	R
4.6	1.8	5.9
5.9	3.5	8.6
6.2	2.1	4.4
3.9	4.6	9.5
5.5	3.3	6.1
6.9	5.6	4.6
6.5	1.5	5.8
4.3	2.7	10.2

Table Q3: Statistics grade and math aptitude score on five differences students

Statistics Grade 85 95	Math Aptitude Score
85	95
95	85
70	80
65	70
70	60

SEMESTER/SESSION : II / 2019/2020

PROGRAMME : BFF

COURSE NAME : CIVIL ENGINEERING

STATISTICS

COURSE CODE : BFC 34303

Table Q4: Speed (in km/hour) for light and heavy vehicles on a highway segment

Light Vehicles	Heavy Vehicles
86	80
75	85
92	62
112	76
95	87
79	74
65	60
108	108
98	82
71	94
65	
127	

SEMESTER/SESSION : II / 2019/2020

PROGRAMME

: BFF

CIVIL ENGINEERING

COURSE CODE : BFC 34303

APPENDIX A: STATISTICAL FORMULAS

The following information may be useful. The symbols have their usual meaning.

Mean and Variance of Ungrouped Data

$$\bar{x} = \frac{\sum x}{n}$$

$$\bar{x} = \frac{\sum x}{n} \qquad \qquad s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Mean and Variance of Grouped Data

$$\bar{x} = \frac{\sum fx}{\sum f}$$

$$\bar{x} = \frac{\sum fx}{\sum f}$$

$$s^2 = \frac{\sum fx^2 - \frac{(\sum fx)^2}{\sum f}}{(\sum f) - 1}$$

Standard Normal Distribution z-value

$$z = \frac{X - \mu}{\sigma}$$

Central Limit Theorem

$$\mu_{\bar{X}} = \mu$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

$$\mu_{\bar{X}} = \mu$$
 $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$ $z = \frac{\bar{X} - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)}$

$$\mu = E(X) = \sum x.P(X)$$

$$\mu = E(X) = \sum x.P(X)$$
 $\sigma = Std(X) = \sqrt{E(X^2) - [E(X)]^2}$ $E(X^2) = \sum x^2.P(X)$

$$E(X^2) = \sum x^2 . P(X)$$

Difference Between Two Means

$$Z=\bar{X}-\bar{Y}$$

$$\mu_{\bar{X}-\bar{Y}} = \mu_{\bar{X}} - \mu_{\bar{Y}}$$

$$\mu_{\bar{X}-\bar{Y}} = \mu_{\bar{X}} - \mu_{\bar{Y}} \qquad \qquad \sigma_{\bar{X}-\bar{Y}} = \sqrt{\frac{{\sigma_X}^2}{n} + \frac{{\sigma_Y}^2}{m}}$$

SEMESTER/SESSION:

II / 2019/2020

COURSE NAME

CIVIL ENGINEERING

PROGRAMME

COURSE CODE : BFC 34303

Confidence Interval

$$\bar{X} \pm z \frac{s}{\sqrt{n}}$$

$$\bar{X} \pm t \frac{s}{\sqrt{n}}$$

$$\bar{X} \pm t \frac{s}{\sqrt{n}}$$

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}}$$

$$p \pm z \sqrt{\frac{p(1-p)}{n}}$$

$$FPC = \sqrt{\frac{N-n}{N-1}}$$

$$p \pm z \sqrt{\frac{p(1-p)}{n}} \qquad FPC = \sqrt{\frac{N-n}{N-1}} \qquad \bar{X} \pm z \frac{s}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

$$(\mu_{\bar{X}} - \mu_{\bar{Y}}) \pm t_{\frac{\alpha}{2}, df} \left(\sqrt{\frac{s_{\bar{X}}^2}{n} + \frac{s_{\bar{Y}}^2}{m}} \right) = \frac{\left(\frac{s_{\bar{X}}^2}{n} + \frac{s_{\bar{Y}}^2}{m}\right)^2}{\left(\frac{s_{\bar{X}}^2}{n}\right)^2 + \left(\frac{s_{\bar{Y}}^2}{m}\right)^2}$$

$$df = \frac{\left(\frac{S_{\bar{X}}^2}{n} + \frac{S_{\bar{Y}}^2}{m}\right)^2}{\left(\frac{S_{\bar{X}}^2}{n}\right)^2 + \left(\frac{S_{\bar{Y}}^2}{m}\right)^2}{m - 1}$$

One-Sample Hypothesis Testing (z-Test and t-Test)

$$z = \frac{\bar{X} - \mu_o}{\sigma / \sqrt{n}}$$

$$z = \frac{\overline{X} - \mu_o}{S / \sqrt{n}} \qquad \qquad t = \frac{\overline{X} - \mu_o}{S / \sqrt{n}}$$

$$t = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

Two-Sample Hypothesis Testing (z-Test and t-Test)

$$z = \frac{\bar{X}_X - \bar{X}_Y}{\sqrt{\frac{{S_X}^2}{n} + \frac{{S_Y}^2}{m}}}$$

$$t = \frac{\bar{X}_X - \bar{X}_Y}{\sqrt{\frac{S_P^2}{n} + \frac{S_P^2}{m}}}$$

$$z = \frac{\bar{X}_X - \bar{X}_Y}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}} \qquad t = \frac{\bar{X}_X - \bar{X}_Y}{\sqrt{\frac{s_P^2}{n} + \frac{s_P^2}{m}}} \qquad s_P^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$$

Simple Linear Regression

$$Y = a + bX$$

$$a = \frac{\sum Y}{n} - b \frac{\sum X}{n}$$
 $e = Y - \hat{Y}$

$$e = Y - \hat{Y}$$

$$b = \frac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum X^2) - (\sum X)^2}$$

$$b = \frac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum X^2) - (\sum X)^2} \qquad r = \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{[n(\sum X^2) - (\sum X)^2][n(\sum Y^2) - (\sum Y)^2]}}$$

$$s_{y.x} = \sqrt{\frac{\sum Y^2 - a(\sum Y) - b(\sum XY)}{n - 2}}$$

SEMESTER/SESSION : II / 2019/2020

CIVIL ENGINEERING

PROGRAMME : BFF COURSE CODE : BFC 34303

F-Test

$$F = \frac{{s_1}^2}{{s_2}^2} \qquad v_1 = n_1 - 1 \qquad v_2 = n_2 - 1$$

$$v_1 = n_1 - 1$$

$$v_2 = n_2 - 1$$

One Way ANOVA Test

$$SS = \sum X^2 - \frac{(\sum X)^2}{n}$$

$$SS = \sum X^2 - \frac{(\sum X)^2}{n} \qquad SST = \sum \left(\frac{T_c^2}{n_c}\right) - \frac{(\sum X)^2}{n} \qquad SSE = SS - SST$$

$$SSE = SS - SST$$

$$MST = \frac{SST}{k-1}$$
 $MSE = \frac{SSE}{n-k}$ $F = \frac{MST}{MSE}$

$$MSE - \frac{SSE}{n-k}$$

$$F = \frac{MST}{MSE}$$

$$v_1 = k - 1$$

$$v_1 = k - 1 \qquad \qquad v_2 = n - k$$

Chi-Square Test

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} \qquad df = n-1$$

$$df = n - 1$$

Chi-Square Goodness of Fit Test

$$\chi^2 = \sum \left[\frac{(f_o - f_e)^2}{f_e} \right] \qquad df = k - 1$$

$$df = k - 1$$

Chi-Square Contingency Table Analysis

$$\chi^2 = \sum \left[\frac{(f_o - f_e)^2}{f_e} \right]$$
 $df = (r - 1)(c - 1)$

$$df = (r-1)(c-1)$$

Mann-Whitney Test

$$z = \frac{W - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}}$$

Mann-Whitney U Test

$$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$$

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1$$
 $U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} - R_2$

SEMESTER/SESSION : II / 2019/2020 COURSE NAME

: CIVIL ENGINEERING

STATISTICS

PROGRAMME : BFF COURSE CODE : BFC 34303

APPENDIX B: STATISTICAL TABLES

I. Standard Normal Distribution (Right-Tail) showing P(Z > z)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
8.0	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0 0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002

CONFIDENTIAL

SEMESTER/SESSION : II / 2019/2020

COURSE NAME : CIVIL ENGINEERING

STATISTICS

PROGRAMME : BFF COURSE CODE : BFC 34303

II. Standard Normal Distribution showing P $(0 \le Z \le z)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0 0478	0 0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
8.0	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0,3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998

SEMESTER/SESSION: II / 2019/2020 PROGRAMME: BFF
COURSE NAME: CIVIL ENGINEERING: COURSE CODE: BFC 34303

STATISTICS

III. Critical Values of the Student's *t* distribution

	Level of significance for One-Tailed Test, α											
df	0.1	0.05	0.025	0.01	0.005	0.001	0.0005					
df			Level of signif	icance for Two	o-Tailed Test,	α						
	0.2	0.1	0.05	0.02	0.01	0.002	0.001					
1	3.078	6.314	12.076	31.821	63.657	318.31	636.62					
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598					
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924					
4	1.533	2.132	2.776	3 747	4.604	7.173	8.610					
5	1 476	2 015	2.571	3.365	4.032	5.893	6.869					
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959					
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408					
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041					
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781					
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587					
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437					
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318					
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221					
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140					
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073					
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015					
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965					
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922					
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883					
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850					
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819					
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792					
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767					
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745					
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725					
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707					
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690					
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674					
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659					
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646					

SEMESTER/SESSION : II / 2019/2020

COURSE NAME : CIVIL ENGINEERING

STATISTICS

PROGRAMME : BFF COURSE CODE : BFC 34303

IV. Critical Values of the F distribution

	$\alpha = 0.05$												
V2					- 1	/ 1							
	1	2	3	4	5	6	7	8	9	10			
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88			
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40			
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79			
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96			
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74			
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06			
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64			
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35			
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14			
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98			
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85			
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75			
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67			
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60			
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54			
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49			
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45			
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41			
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38			
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35			
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32			
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30			
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27			
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25			
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24			

SEMESTER/SESSION : II / 2019/2020 PROGRAMME : BFF COURSE NAME : CIVIL ENGINEERING COURSE CODE : BFC 34303

STATISTICS

V. Critical Values of the Chi-square, χ^2 distribution

46	α												
df	0.1	0.05	0.025	0.01	0.005	0.001							
1	2 706	3.841	5.024	6.635	7.879	10.828							
2	4.605	5.991	7.378	9.210	10.597	13.816							
3	6.251	7.815	9.348	11.345	12.838	16.266							
4	7.779	9.488	11.143	13.277	14.860	18.467							
5	9.236	11.070	12.833	15.086	16.750	20.51							
6	10.645	12.592	14.449	16.812	18.548	22.45							
7	12.017	14.067	16.013	18.475	20.278	24.322							
8	13.362	15.507	17.535	20.090	21.955	26.12							
9	14.684	16.919	19.023	21.666	23.589	27.87							
10	15.987	18.307	20.483	23.209	25.188	29.58							
11	17.275	19.675	21.920	24.725	26.757	31.26							
12	18.549	21.026	23.337	26.217	28.300	32.90							
13	19.812	22.362	24.736	27.688	29.819	34.52							
14	21.064	23.685	26.119	29.141	31.319	36.12							
15	22.307	24.996	27.488	30.578	32.801	37.69							
16	23.542	26.296	28.845	32.000	34.267	39.25							
17	24.769	27.587	30.191	33.409	35.718	40.79							
18	25.989	28.869	31.526	34.805	37.156	42.31							
19	27.204	30.144	32.852	36.191	38.582	43.82							
20	28.412	31.410	34.170	37.566	39.997	45.31							
21	29.615	32.671	35.479	38.932	41.401	46.79							
22	30.813	33.924	36.781	40.289	42.796	48.26							
23	32.007	35.172	38.076	41.638	44.181	49.72							
24	33.196	36.415	39.364	42.980	45.559	51.17							
25	34.382	37.652	40.646	44.314	46.928	52.62							
26	35.563	38.885	41.923	45.642	48.290	54.05							
27	36.741	40.113	43.195	46.963	49.645	55.47							
28	37.916	41.337	44.461	48.278	50.993	56.89							
29	39.087	42.557	45.722	49.588	52.336	58.30							
30	40.256	43.773	46.979	50.892	53.672	59.70							

SEMESTER/SESSION : II / 2019/2020 COURSE NAME

CIVIL ENGINEERING

STATISTICS

PROGRAMME : BFF COURSE CODE : BFC 34303

VI. Critical Values of the Mann-Whitney U (Two-tailed)

								n ₁						
n ₂	α	3	4	5	6	7	8	9	10	11	12	13	14	15
•	0.05	0	0	0	1	1	2	2	3	3	4	4	5	5
3	0.01	0	0	0	0	0	0	0	0	0	1	1	1	2
4	0.05	0	0	1	2	3	4	4	5	6	7	8	9	10
4	0.01	0	0	0	0	0	1	1	2	2	3	3	4	5
.	0.05	0	1	2	3	5	6	7	8	9	11	12	13	14
5	0.01	0	0	0	1	1	2	3	4	5	6	7	7	8
6	0.05	1	2	3	5	6	8	10	11	13	14	16	17	19
0	0.01	0	0	1	2	3	4	5	6	7	9	10	11	12
7	0.05	1	3	5	6	8	10	12	14	16	18	20	22	24
ľ	0.01	0	0	1	3	4	6	7	9	10	12	13	15	16
8	0.05	2	4	6	8	10	13	15	17	19	22	24	26	29
0	0.01	0	1	2	4	6	7	9	11	13	15	17	18	20
9	0.05	2	4	7	10	12	15	17	20	23	26	28	31	34
9	0.01	0	1	3	5	7	9	11	13	16	18	20	22	24
10	0.05	3	5	8	11	14	17	20	23	26	29	33	36	39
10	0.01	0	2	4	6	9	11	13	16	18	21	24	26	29
11	0.05	3	6	9	13	16	19	23	26	30	33	37	40	44
11	0.01	0	2	5	7	10	13	16	18	21	24	27	30	33
12	0.05	4	7	11	14	18	22	26	29	33	37	41	45	49
12	0.01	1	3	6	9	12	15	18	21	24	27	31	24	37
13	0.05	4	8	12	16	20	24	28	33	37	41	45	50	54
13	0.01	1	3	7	10	13	17	20	24	27	31	34	38	42
14	0.05	5	9	13	17	22	26	31	36	40	45	50	55	59
14	0.01	1	4	7	11	15	18	22	26	30	34	38	42	46
15	0.05	5	10	14	19	24	29	34	39	44	49	54	59	64
15	0.01	2	5	8	12	16	20	24	29	33	37	42	46	51

SEMESTER/SESSION : II / 2019/2020

STATISTICS

COURSE NAME : CIVIL ENGINEERING

PROGRAMME : BFF COURSE CODE : BFC 34303

: BFF

VII. Critical Values of the Mann-Whitney U (One-tailed)

								n ₁						
n ₂	α	3	4	5	6	7	8	9	10	11	12	13	14	15
•	0.05	0	0	1	2	2	3	4	4	5	5	6	7	7
3	0.01	0	0	0	0	0	0	1	1	1	2	2	2	3
4	0.05	0	1	2	3	4	5	6	7	8	9	10	11	12
4	0.01	0	0	0	1	1	2	3	3	4	5	5	6	7
5	0.05	1	2	4	5	6	8	9	11	12	13	15	16	18
5	0.01	0	0	1	2	3	4	5	6	7	8	9	10	11
6	0.05	2	3	5	7	8	10	12	14	16	17	18	21	23
0	0.01	0	1	2	3	4	6	7	8	9	11	12	13	15
7	0.05	2	4	6	8	11	13	15	17	19	21	24	26	28
,	0.01	0	1	3	4	6	7	9	11	12	14	16	17	19
8	0.05	3	5	8	10	13	15	18	20	23	26	28	31	33
0	0.01	0	2	4	6	7	9	11	13	15	17	20	22	24
9	0.05	4	6	9	12	15	18	21	24	27	30	33	36	39
	0.01	1	3	5	7	9	11	14	16	18	21	23	26	28
10	0.05	4	7	11	14	17	20	24	27	31	34	37	41	44
	0.01	1	3	6	8	11	13	16	19	22	24	27	30	33
11	0.05	5	8	12	16	19	23	27	31	34	38	42	46	50
	0.01	1	4	7	9	12	15	18	22	25	28	31	34	37
12	0.05	5	9	13	17	21	26	30	34	38	42	47	51	55
	0.01	2	5	8	11	14	17	21	24	28	31	35	38	42
13	0.05	6	10	15	19	24	28	33	37	42	47	51	56	61
	0.01	2	5	9	12	16	20	23	27	31	35	39	43	47
14	0.05	7	11	16	21	26	31	36	41	46	51	56	61	66
• • • • • •	0.01	2	6	10	13	17	22	26	30	34	38	43	47	51
15	0.05	7	12	18	23	28	33	39	44	50	55	61	66	72
13	0.01	3	7	11	15	19	24	28	33	37	42	47	51	56