

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER II SESSION 2019/2020

COURSE NAME

: HIGHWAY ENGINEERING

COURSE CODE

: BFC 31802

PROGRAMME CODE :

BFF

EXAMINATION DATE :

JULY 2020

DURATION

5 HOURS AND 30 MINUTES

INSTRUCTIONS

: ANSWER ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF FOURTEEN (14) PAGES

1000

Differentiate between corrective and preventive rehabilitation techniques. Q1

(5 marks)

Crocodile crack is one type of pavement distress. Briefly explain TWO (2) possible (b) causes and the probable treatments for this type of pavement distress.

(5 marks)

Table Q1(c)(i) shows the number of vehicles with different classes in accordance to the (c) traffic count of the proposed road project provided by Highway Planning Unit (HPU). The traffic count covers a time period of 16 hours. Based on this result, determine the Equivalent Standard Axle Load (ESAL) for the base year and after 20 years if a traffic growth factor is 5%. Given lane distribution, L = 1.0 and terrain factor, T = 1.1. Refer Table Q1(c)(ii) in your calculation.

(7 marks)

You have been asked to design the flexible pavement for an access highway to a major truck terminal. Given the design traffic over 20 years is 9.7 million. For the sub-grade, a series of CBR tests were conducted. The CBR for subgrade has been analysed with normal distribution and probability of 85%, CBR Mean = 167% and Standard Deviation = 4.5 %. Based on the information given, determine the thickness of the proposed road. Use Table Q1(c)(ii), Table Q1(d)(i) to Table Q1(d)(iv) and Figure Q1(d)(i) to Figure Q1(d)(v) for your calculation.

(8 marks)

State the activities involved in Pavement Management System (PMS). Q2 (a)

(5 marks)

- Briefly discuss TWO (2) basic components in Pavement Management System (PMS). (5 marks)
- The Point of Intersection (P.I) of two tangent lines is station 1115+20. The radius of curvature is 275 m, and the angle of deflection is 52°. Based on the information, estimate the following parameters:
 - Length of the curve (L) (i)

(3 marks)

Length of the Long Chord (L.C) (ii)

(3 marks)

Length of the Middle Ordinate (M) (iii)

(3 marks)

Length of External Distance (E) (iv)

(3 marks)

The station for the Point of Curvature (P.C) and Point of Tangency (P.T) (v)

(3 marks)

CONFIDENTIAL

ERBUK

- Q3 (a) Figure Q3(a) shows the longitudinal profile of a site for a proposed highway. The distance and corresponding volume of soil to be cut or filled are indicated in the figure. Assume that the shrinkage and bulking factors are equal to 1.0.
 - (i) Construct a Mass Haul Diagram.

(8 marks)

- (ii) Determine the volume and direction of haul using table in **Figure Q3(a)**. (5 marks)
- (iii) Determine the volume of borrow or waste (if any).

(2 marks)

- (b) The embankment of a proposed alternative road from Parit Raja to Batu Pahat is 10 km long. The average cross section of the embankment is shown in **Figure Q3(b)**. The specification requires the embankment to be compacted to 95% of the maximum dry density according to the B.S 1377 Compaction Test (2.5 kg rammer method). **Table Q3(b)** present the density of laboratory and borrow material at various conditions
 - (i) Determine the volume of borrow pit material needed for 1 m³ of the compacted road embankment.

(5 marks)

(ii) Determine the volume of additional water needed for the whole volume of embankment.

(5 marks)

Q4 (a) Pavement performance is an important factor in pavement design because it provides a framework upon which a judgement on the road is either success or failure, which is associated with the ability of the pavement to carry out the design loading. Based on these statements, briefly discuss a distinction between the two different types of failures.

(5 marks)

- (b) Discuss on how to evaluate whether a pavement should be rehabilitated or else based on the characteristics of pavement condition. Explain in detail steps of the evaluation.

 (10 marks)
- (c) A sustainable and environmental friendly construction method includes recycling techniques for road construction. Explain how this technique may benefit both the environment and construction player.

(10 marks)

- END OF QUESTIONS -

CONFIDENTIAL TERBUKA

SEMESTER/SESSION:

II / 2019/2020

PROGRAMME :

RFF

COURSE NAME

HIGHWAY ENGINEERING

COURSE CODE : BFC 313

TABLE Q1(c)(i): Average daily traffic (ADT) of the different vehicle classes

Vehicle		Average Daily Traffic	
HPU class designation	Class	(ADT)	
Cars and taxis	С	2640	
Small trucks and vans	CV1	100	
Large trucks	CV2	120	
Articulated trucks	CV3	250	

TABLE Q1(c)(ii): Axle configuration and load equivalence factors (LEF)

Vehicle	Average Daily Traffic	
HPU class designation	Class	(ADT)
Cars and taxis	С	0
Small trucks and vans	CV1	0.1
Large trucks	CV2	4
Articulated trucks (3 or more axles)	CV3	4.4
Buses (2 or 3 axles)	CV4	1.8
Motorcycles	MC	0
Commercial Traffic (Mixed)	CV%	3.7

TERBUKA

SEMESTER/SESSION:

II / 2019/2020

PROGRAMME

BFF

COURSE NAME

HIGHWAY ENGINEERING

COURSE CODE

BFC 31802

TABLE Q1(d)(i): Classes of subgrade strength (based on CBR) used as input in the pavement catalogue of ATJ 5/85 (Amendment 2013) manual

Sub-Grade	CBR (%)	Elastic Modulus (MPa)	
		Range	Design Input Value
SG1	5 to 12	50 to 20	60
SG2	12.1 to 20	80 to 140	120
SG3	20.1 to 30.0	100 to 160	140
SG4	>30.0	120 to 180	180

TABLE Q1(d)(ii): Traffic categories used in this manual (EAL =80 kN)

Traffic category	Design Traffic (ESAL x 10 ⁶)	Probability (Percentile Applied to Properties of Subgrade Material	
T1	≤1.0	≥ 60%	
T2	1.1 to 2.0	≥ 70%	
Т3	2.1 to 10.0	≥ 85%	
T4 10.1 to 30.0 $\geq 85\%$		≥ 85%	
T5	>30.0 ≥ 85%		

TABLE Q1(d)(iii): Conceptual outline of pavement structures used in ATJ 5/85 (Amendment 2013)

Pa	vement	Traff	ic Category (b	oased on millio	n ESALs@ 80	kN)
St	ructure	≤1	1 to 2	2.1 to 10	10.1 to 30	>30
		T1	T2	Т3	T4	T5
Co	mbined					24 cm
Thi	ckness of				20 cm	
Bit	uminous			18 cm		
Layers			10 cm			
		5 cm				
C	rushed					
Aggre	egate Road					10 -
	+ Sub-base					
	Subgrade					
C	BR of:		See Marie	1.23.12.1		
0	5 to 12	23+15 cm	20+15 cm	20+20 cm	NR	NR
0	12.1 to 20	20+15 cm	20+15 cm	20+20 cm	20+20 cm	20+20 cm
0	20.1 to 30	20+10 cm	20+10 cm	20+15 cm	20+15 cm	20+15 cm
0	>30	20 cm	20+10 cm	20+10 cm	20+10 cm	20+10 cm

SEMESTER/SESSION:

II / 2019/2020

PROGRAMME : BFF

COURSE NAME

HIGHWAY ENGINEERING

COURSE CODE : BFC 31802

TABLE Q1(d)(iv): Summary of material use in pavement structure in Malaysia

N	W PAVEMENT DESIGN AND CONSTRUCTION		
DESIGNATION	DESCRIPTION	ABBE SYME	EVIATION/ OL
DRAINAGE LAYER	Primarily functional granular layer with load distribution capability similar to the Sub-Base	DL	
SUB-BASE COURSE	Crushed or natural granular material with maximum 10% lines	GSB	
ROAD BASE COURSE			
Crushed Aggregate	Crushed granular material with maximum 10% fines	CAB	
* Wet Mix	Crushed granular material with maximum 10% fines	WMB	
Bituminous	Coarse biluminous mix (AC 28)	BB	
▲ STB 1	Stabilised base with at least 3% Portland cement	STBI	
• STB2	Stabilised base with bituminous emulsion and maximum of 2% Portland cement	\$182	
BINDER COURSE			
Binder Course	Coarse bituminous mix (AC 28)	BG	
WEARING COURSE			
Asphaltic Concrete	Medium to fine biluminous mix (AC 10 er AC 14).	OSC	
Polymer Modified Asphalt (PMA)	Medium to line biluminous mix (AC 10 or AC 14) incorporated with polymer modified bitumen.	PMA	
Stone Mastic Asphalt (SMA)	Stone mastic asphalt (SMA 14 or SMA 20)	SMA	
• Porous Asphalt	Primarily functional porous asphalt (PA 10 or PA 14)	PA	
Gap-Graded Asphalt	Gap Graded Asphalt GPA I or GPA II	FC	

HIGHWAY ENGINEERING : 11/2019/2020 SEMESTER/SESSION

COURSE NAME

COURSE CODE PROGRAMME

BFC 31802 BFF

Pavement	Type SG 1:	Conventional Flexible: Granular Base	Deep Strength: Stabilised Base	Stabilised Base with Surface CSB: 300
	SG 1: CBR 5 to 12	BSC: 50 CAB: 250 GSB: 150	BSC: 50 STB 2: 100 GSB: 200	ent** Surface freatment** or STB 2: 250
Sub-Grade	SG 2: CBR 12.1 to 20	BSC: 50 CAB: 200 GSB: 150	BSC: 50 STB 2: 100 GSB: 150	Treatment** Treatment** GSB: 300 STB 2: 250
Sub-Grade Category	SG 3: CBR 20.1 to 30	BSC: 50 CAB: 200 GSB: 100	BSC: 50 STB 2: 100 GSB: 100	Surface Surface Treatment** GSB: 250 STB 2: 200
	SG 4; CBR > 30	BSC: 50 CAB: 100 GSB: 100	BSC: 50 STB 2: 100 GSB: 100	Surface Surface Treatment** GSB: 250 STB 2: 200

Notes:

* Full Depth Asphalt Concrete Pavement is not recommended for this Traffic Category.

** Single or Double Layer Chip Seal or Micro-Surfacing.

FIGURE Q2(d)(i): Pavement structure for traffic category T1: <1million ESALs (80 kN)

BFC 31802

FINAL EXAMINATION

SEMESTER/SESSION : II / 2019/2020 COURSE NAME : HIGHWAY ENGINEERING

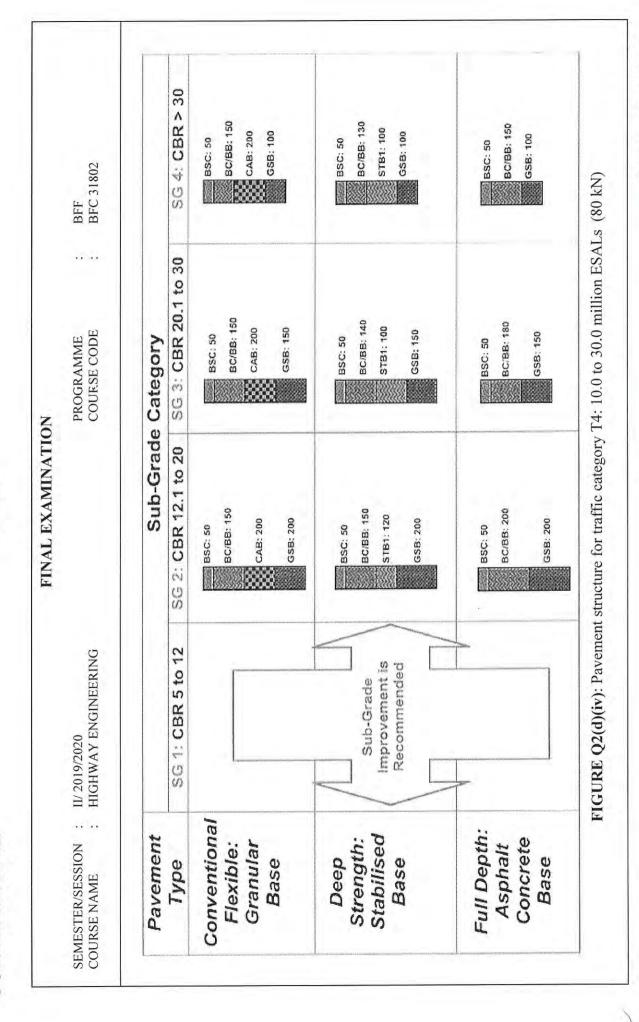
PROGRAMME COURSE CODE

BFF BFC 31802

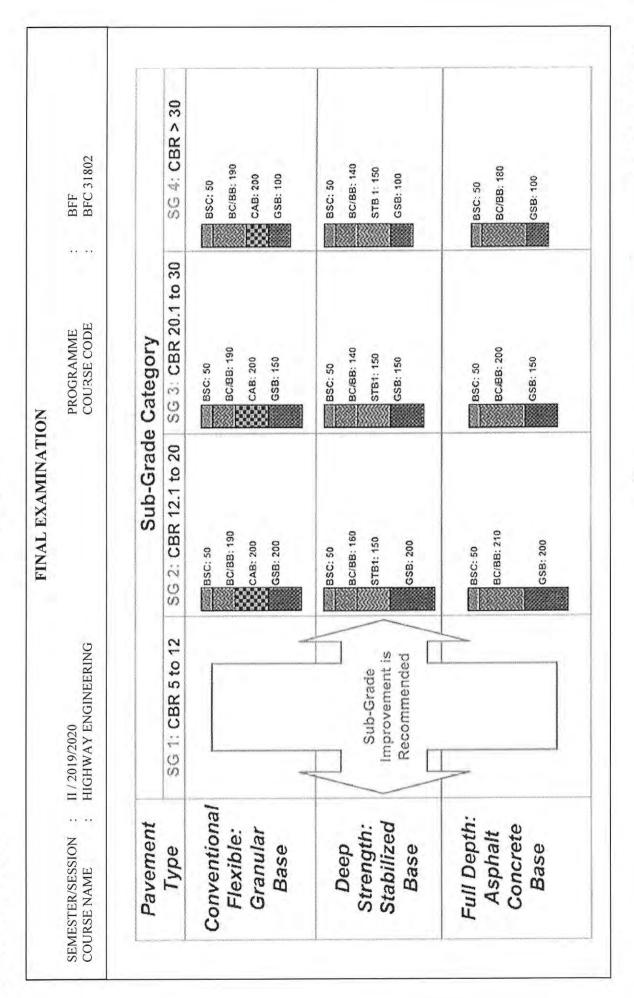
Pavement		Sub-Grade Category	e Category	
Туре	SG 1: CBR 5 to 12	SG 2: CBR 12.1 to 20	SG 3: CBR 20.1 to 30	SG 4: CBR > 30
Conventional	BSC: 140	BSC: 140	BSC: 120	BSC: 100
Flexible:	CAB: 200	CAB: 200	CAB: 200	CAB: 200
Base	GSB: 150	GSB: 150	GSB: 100	GSB: 100
Deep	BSC: 120	BSC: 120	BSC: 100	BSC: 100
Strength: Stabilised	STB 2: 150	STB 2: 150	STB 2: 120	STB 2: 120
Base	GSB: 200	GSB: 150	GSB: 150	GSB: 150
Full Depth: Asphalt	BSC: 50	BSC: 50	BSC: 50	BSC: 50
Concrete Base	GSB: 250	GSB: 200	GSB: 150	GSB: 150

FIGURE Q2(d)(ii): Pavement structure for traffic category T2: 1.0 to 2.0 million ESALs

SEMESTER/SESSION COURSE NAME


II / 2019/2020 HIGHWAY ENGINEERING

PROGRAMME COURSE CODE


BFF BFC 31802

Pavement		Sub-Grade	Sub-Grade Category	
lype	SG 1: CBR 5 to 12	SG 2: CBR 12.1 to 20	SG 3: CBR 20.1 to 30	SG 4: CBR > 30
Conventional Flexible: Granular Base	BSC: 50 BC: 130 CAB: 200 GSB: 200	BC: 130 CAB: 200 GSB: 200	BSC: 50 BC: 130 CAB: 200 GSB: 150	BC: 130 CAB: 200 GSB: 100
Deep Strength: Stabilised Base	BSC: 50 BC: 100 STB 1: 150 GSB: 200	BSC; 50 BC: 100 STB 1: 150 GSB: 150	BSC: 50 BC: 100 STB 1: 100 GSB: 150	BSC: 50 BC: 100 STB 1: 100 GSB: 100
Full Depth: Asphalt Concrete Base	BSC: 50 BC/BB: 160 GSB: 200	BSC: 50 BC/BB: 150 GSB: 150	BSC: 50 BC/BB: 130 GSB: 150	BSC: 50 BC/BB: 130 GSB: 100

FIGURE Q2(d)(iii): Pavement structure for traffic category T3: 2.0 to 10.0 million ESALs (80kN)

TERBUKA

CONFIDENTIAL

TERBUKA

SEMESTER/SESSION : II / 2019/2020 COURSE NAME

HIGHWAY ENGINEERING

PROGRAMME COURSE CODE

BFC 31802 BFF

3,282 8 4,336 in 3,670 8 2,077 8 4,578 100 4,435 130 5,622 8 9,315 3 3,314 09 Existing Ground Level 7,012 2 3,216 12 3,615 105 Distance (m) 7 olume (m³) Haul (m²) Cut (m. Fill (m²) Proposed Formation Level

FIGURE Q3(a): Longitudinal profile of a site for a proposed highway

Borrow (m²)

Waste (m

12

TERBUKA

SEMESTER/SESSION:

II / 2019/2020

PROGRAMME : BFF

COURSE NAME

HIGHWAY ENGINEERING

COURSE CODE : BFC 31802

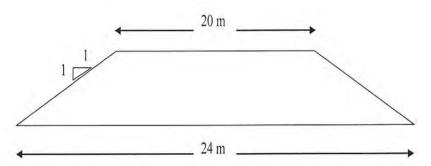


FIGURE Q3(b) Cross section of the embankment

TABLE Q3(b) Density and moisture content of the soil

Laboratory Co	ompaction Test	In-situ (porrow pit)
Maximum Dry density (Mg/m³)	Optimum moisture content (%)	Bulk density (Mg/m³)	Natural moisture content (%)
1.56	12	1.88	9.6

Bulking factor =
$$\frac{\text{Volume before excavation}}{\text{Volume after excavation}} = 1.25$$

SEMESTER/SESSION:

II / 2019/2020

PROGRAMME

RFF

COURSE NAME

HIGHWAY ENGINEERING

COURSE CODE

BFC 31802

The following information may be useful. The symbols have their usual meaning

$$ESAL_{Y1} = [ADT_{VC1} \times LEF_1 + ADT_{VC2} \times LEF_2 + \cdots + ADT_{VC4} \times LEF_4 +] \times 365 \times L \times T$$

$$ESAL_{Y1} = ADT \times Pc \times 365 \times 3.7 \times L \times T$$

$$ESAL_{DES} = ESAL_{Y1} \times \frac{\lceil (1+r)^n - 1 \rceil}{r}$$

$$ESAL_{DES} = ESAL_{Y1} \times TGF$$

Desig input value = Mean - (Normal Deviate x Standard Deviation)

85% Probabilty: Mean -1.000 x STD

60% Probability: Mean -0.253 x STD

70% Probability: Mean -0.525 x STD

$$T = R \tan (\Delta / 2)$$

$$C = R \sin(\Delta/2)$$

$$E = R \left[sec(\Delta/2) - 1 \right]$$

$$M = R \left[1 - \cos \left(\Delta / 2 \right) \right]$$

$$L = (\Delta/360)(2\pi R)$$

$$R_{min} = \frac{V^2}{127(e+f)}$$

$$A = h(b + nh)$$

$$\Delta PSI = PSI_i - PSI_t$$

$$D_1 = \frac{SN_1}{a_1m_1}, \qquad SN_1^* \ge SN_1$$

$$D_2 = \frac{SN_2 - SN_1^*}{a_2m_2}, \qquad SN_1^* + SN_2^* \ge SN_2$$

$$D_3 = \frac{SN_3 - SN_2^* - SN_1^*}{a_3m_3}, \qquad SN_1^* + SN_2^* + SN_3^* \ge SN_3$$