

UNIVERSITITUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER II SESSION 2019/2020

COURSE NAME

: TURBOMACHINERY

COURSE CODE

: BDE 40303

PROGRAMME

: BDD

EXAMINATION DATE

: ЛJLY 2020

DURATION

: 3 HOURS

INSTRUCTIONS

: ANSWER ONLY FIVE (5) FROM SIX

(6) QUESTIONS

OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

TERBUKA

CONFIDENTIAL

CONFIDENTIAL

BDE 40303

Q1 (a) The flow rate of a liquid which is discharged by a pump is given by Q and the head is given by H. The specific gravity of the liquid which has a standard unit of kg/m².s², is denoted by SG. Using dimensional analysis, find the expression for pumping power (P) for this machine.

(8 marks)

- (b) An axial pump has a rotor diameter of 32 cm. The pump discharges water ($\rho_{water} = 1000 \text{ kg/m}^3$) at a rate of 2.5 m³/min while rotating at 1450 RPM. The energy input to the pump is 120 J/kg and the overall efficiency is 78%. If a scale model of this pump has a rotor diameter of 22 cm and rotates at 2900 RPM, calculate:
 - (i) flow rate of water in the model pump;
 - (ii) change in total pressure from the model pump; and
 - (iii) input power to the model pump.

(12 marks)

- Q2 (a) An axial flow compressor is designed to operate with constant axial velocity component. For this compressor:
 - (i) show that the speed ratio (U/c_x) can be expressed as:

$$\frac{U}{c_x} = \tan \alpha_1 + \tan \beta_1 = \tan \alpha_2 + \tan \beta_2$$

(ii) show that for a 50% degree of reaction, the gas angles are:

$$\alpha_1 = \beta_2$$
 and $\alpha_2 = \beta_1$

where, α_1 and β_1 are inlet absolute flow and blade angles respectively and α_2 and β_2 are exit absolute flow and blade angles respectively.

(6 marks)

Complete Com-

(b) An axial flow compressor operates based on the following data:

Parameter	Value
Blade speed at mean blade radius, Um	185 m/s
Blade speed at blade tip, Ut	240 m/s
Stagnation temperature rise, ΔT_0	15 K
Axial absolute velocity component, c _x	140 m/s
Work done factor, λ	0.85
Degree of reaction at mean radius, Λ	50%

For a free vortex design condition, determine:

- (i) whirl component at mean rotor inlet;
- (ii) gas angles α_1 , α_2 , β_1 and β_2 at mean radius;
- (iii) whirl component at rotor exit; and
- (iv) gas angles at blade tip.

(14 marks)

Figure Q3 shows the characteristic map of a centrifugal compressor. The map presents the performance parameters which are normalized by design values, namely pressure ratio (PR/PR_{Design}), pseudo-dimensionless mass flow (MFP/MFP_{Design}) and pseudo-dimensionless speed ($\overline{N}/\overline{N}_{Design}$). The design point is also marked on the compressor map. At 80% design speed ($\overline{N}/\overline{N}_{Design}$ = 0.8), the compressor operates at the following conditions:

Parameter	Value
Rotational speed, N	12,000 RPM
Mass flow rate, m	11.5 kg/s
Pressure ratio, PR	2.45
Normalized pressure ratio, PR/PR _{Design}	0.7
Stagnation inlet temperature, T ₀₁	298 K
Stagnation inlet pressure, P ₀₁	101 kPa

Using the map and the given data, evaluate the following quantities for the compressor:

- (i) design pseudo-dimensionless speed in RPM/ \sqrt{K} ;
- (ii) design pressure ratio;
- (iii) design mass flow rate in kg/s;
- (iv) choking mass flow rate at design speed in kg/s; and
- (v) pressure ratio at surge point for 70% design speed.

(20 marks)

CONFIDENTIAL

BDE 40303

- Q4 (a) Define and briefly describe the following terms for axial flow turbines:
 - (i) Normal stage;
 - (ii) Degree of reaction; and
 - (iii) Blade loading.

(6 marks)

- (b) In a normal stage axial flow turbine, gas enters at a constant axial velocity of 250 m/s. The mean blade velocity is 350 m/s and the mass flow rate of gas is 15 kg/s. The nozzle exit angle is 63° while the stage exit swirl (rotor exit) angle is 9°. For this turbine, determine:
 - (i) rotor inlet absolute velocity;
 - (ii) rotor inlet swirl component;
 - (iii) rotor exit swirl component;
 - (iv) inlet and exit blade angles;
 - (v) turbine power output; and
 - (vi) degree of reaction.

(14 marks)

Q5 The operating data of a nozzle type inward flow gas turbine is given as follows:

Parameter	Value
Rotational speed, N	25,500 RPM
Stagnation pressure at nozzle inlet, P ₀₁	705 kPa
Stagnation temperature at nozzle inlet, T ₀₁	1080 K
Static pressure at nozzle exit, P ₂	515 kPa
Static temperature at nozzle exit, T ₂	1000 K
Static pressure at rotor exit, P ₃	360 kPa
Static temperature at rotor exit, T ₃	923 K
Stagnation temperature at rotor exit, T ₀₃	925 K
Specific heat ratio of gas, γ	1.33
Heat capacity of gas, C _p	1147 J/kg.K

For this turbine, evaluate the following performance;

- (i) total-to-static efficiency;
- (ii) specific work of impeller;
- (iii) diameter of impeller; and
- (iv) total-to-total efficiency.

(20 marks)

CONFIDENTIAL

BDE 40303

- A Pelton wheel is operating at 14 m/s bucket velocity with water ($\rho_{water} = 1000 \text{ kg/m}^3$) being supplied at a rate of 0.82 m³/s and a head of 45 m. The water jet is deflected in the bucket by 160°. Taking the velocity coefficient (C_v) to be 0.98 and neglecting the losses in the bucket, determine:
 - (i) jet velocity;
 - (ii) tangential velocity component at bucket exit;
 - (iii) power developed by turbine; and
 - (iv) efficiency of turbine.

(20 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER/SESSION: SEM II / 2019-2020

PROGRAMME:

COURSE NAME:

TURBOMACHINERY

BDD

COURSE CODE: BDE 40303

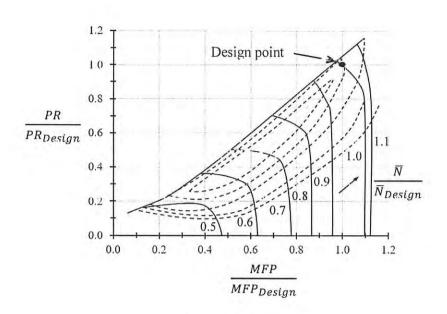


Figure Q3

CONFIDENTIAL