

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER II **SESSION 2019/2020**

COURSE NAME

DATA STRUCTURE AND

ALGORITHM

COURSE CODE

BIT 10703

PROGRAMME CODE : BIT

EXAMINATION DATE : JULY 2020

DURATION

: 3 HOURS

INSTRUCTION

: 1. ANSWER ALL QUESTIONS.

2. PLEASE MAKE SURE TO CLICK "SAVE ANSWER" **BUTTON FOR SUBJECTIVE** QUESTIONS. OBJECTIVE

QUESTIONS ARE SAVED

AUTOMATICALLY.

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

TERBUKA

Q1 Determine the output for the program in Figure Q1.

```
#include <stdio.h>
long testNum( long n );
int main()
{
   long result;

   result = testNum (5);
   printf( "\nResult = %ld\n", result );

   return 0,
}

long testNum( long n )
{
   if ( n == 0 || n == 1 ) {
      printf(" %ld", n);
      return n;
   }
   else {
      return testNum( n - 1 ) | testNum( n - 2 );
   }
}
```

FIGURE Q1

(5 marks)

Q2 Answer Q2(a) and Q2(b) based on the program given in Figure Q2.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define SIZE 10
struct Staff{
     char name [20];
     double salary; };
 typedef struct Staff Staff;
  struct StaffNode{
     Staff staffData;
      struct StaffNode *next; };
int main(){
 int i;
  char staffName[20];
  double staffSalary;
 struct StaffNode *head = NULL, *p1;
  for(i=0; i<SIZE; i++)
   printf("\nEnter name:");
   scanf("%s", staffName);
    printf("\nEnter salary:");
    scanf("%lf", &staffSalary);
```

```
p1 = malloc(sizeof(struct StaffNode));

strcpy(p1->staffData.name, staffName);
p1->staffData.salary = staffSalary;
p1->next = NULL;

if (head == NULL)
    head = p1;
else
    { p1 >next = head,
    head = p1; }
}
```

FIGURE Q2

(a) Write a function, named findMax for **Figure Q2** that will return the maximum salary from the linked list.

(10 marks)

(b) Write a code segment that will remove a node from the linked list according to stack operation.

(10 marks)

Q3 Complete Figure Q3 with a code segment that will insert a new node to the linked list according to queue operation.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define SIZE 10
struct Staff{
    char name[20];
     double salary; };
  typedef struct Staff Staff;
 struct StaffNode{
     Staff staffData;
      struct StaffNode *next; };
int main() {
 int i;
 char staffName[20];
 double staffSalary;
 struct StaffNode *head = NULL, *p1;
 for(i=0; i<SIZE; i++)
   printf("\nEnter name:");
    scanf("%s", staffName);
    printf("\nEnter salary:");
```

```
scanf("%lf",&staffSalary);

p1 = malloc(sizeof(struct StaffNode));

strcpy(p1->staffData.name,staffName);
p1->slaffData.salary = staffSalary;
p1->next = NULL;

Answer:

//for
return 0;
}
```

FIGURE Q3

(10 marks)

Q4 (a) Figure Q4(a) presents a program with a sorting function, called SortData. Determine the output for Figure Q4(a).

```
#include <stdio.h>
void SortData( int list[], int no)
   int i, j, largest, largestidx, temp, k;
   for (i = 0; i < no-1; i++)
   { largest = list[i];
      largestidx = i;
        for (j = i+1; j < no; j++)
          if (list[j] > largest) {
            largest = list[j];
            largestidx = j;
     if (largest>list[i]){
        temp = list[i];
        list[i] = largest;
        list[largestidx] = temp;
      printf("\nPass %d:", i+1);
       for (k = 0, k < no, k+1)
         printf("%5d",list[k]);
}
int main()
int list[] = \{25, 57, 48, 37, 12, 65, 98, 75, 83\};
SortData(list,9);
return 0;}
```

FIGURE Q4 (a)

(b) Name the sorting algorithm performed in Q4 (a).

(2 marks)

(c) Determine the output for Figure Q4 (b).

```
int testQ3( int list[], int no, int x)
    int idx, test, left, right, mid;
    idx - -1;
    Lest - 0;
    left = 0;
    right = no l;
    while (left <= right && !test)
       mid = (int)((left+right)/2);
        if (x == list[mid]){
          lest = 1;
          idx - mid;
        else if (x>list[mid])
          left - mid+l;
       else
          right - mid-1;
  return idx;
int main()
    int i, list[10];
   for(i=0;i<10;i++)
      list[i] = i+3*i;
   printf("\nOutput: %d ", LestQ3(list,10,36));
printf("\nOutput: %d ", testQ3(list,10,8));
printf("\nOutput: %d ", testQ3(list,10,40));
printf("\nOutput: %d ", testQ3(list,10,20));
   printf("\nOutput: %d ", testQ3(list,10,3));
   return 0;}
```

FIGURE Q4(b)

(10 marks)

CONFIDENTIAL

Q5 Answer 5(a) - 5(b) using the sequence of values given in Figure Q5.

22 43 50 12 9 94 47 39 21 10

FIGURE Q5

(a) Draw a binary search tree for the sequence of values given in Figure Q5.

(10 marks)

(b) Determine the results of each traversal algorithm for the answer in Q5(a)

Traversal Algorithm	Answer	
Preorder		
Inorder		
Postorder		

(15 marks)

- END OF QUESTION-

