

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER I **SESSION 2020/2021**

COURSE NAME

: CALCULUS

COURSE CODE

: BFC15003

PROGRAMME CODE BFF

EXAMINATION DATE : JANUARY 2021 / FEBRUARY 2021

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

BFC15003

Q1 (a) An object, initially at rest, falls due to gravity. Find its instantaneous velocity at t = 3.8 seconds and at t = 5.4 seconds. The function is given as $f(t) = 16t^2$.

(5 marks)

(b) Using the Product Rule, find all points of $y = \sin^2 x$ where the tangent line is horizontal.

(5 marks)

(c) Differentiate the following functions,

(i)
$$y = x^2 \cos x$$

(2 marks)

(ii)
$$y = \sqrt{x^{2+\pi}}$$

(4 marks)

$$(iii) x^4 + \sin y = x^3 y^2$$

(4 marks)

- Water is flowing out at the rate of 6 m³/min from a reservoir shaped like hemispherical bowl of radius 13 m, shown in **Figure Q2(a)**. Given that the volume of water in a hemispherical bowl of radius R is $V = \left(\frac{\pi}{3}\right) y^2 (3R y)$ when water is y meters deep. Determine:
 - (i) rate of the water level changing when water is 8 m deep.

(5 marks)

(ii) the radius r of the water's surface when the water is y m deep.

(2 marks)

(iii) rate of the radius r changing when the water is 8 m deep.

(3 marks)

(b) A man in a rowboat at P as shown in **Figure Q2(b)** is 5 km away from the nearest point A on a straight shore, wishes to reach a point B, which is 6 km from point A along the shore (AB = 6 km), in the shortest time. Calculate the location he should landed if he can row 2 km/h and walk 4 km/h.

(10 marks)

CONFIDENTIAL

BFC15003

- Q3 (a) Evaluate the following integral:
 - (i) $\int_{1}^{5} (x^2 + 9)^2 dx$

(2 marks)

(ii) $\int_2^8 \frac{1}{\sqrt{x}} dx$

(2 marks)

(b) Evaluate $\int (6w + 12) \sin^2 \binom{w}{9} dw$ by using integration by parts technique.

(5 marks)

(c) Determine $\int \frac{12}{5-2x} dx$ by using substitution technique.

(5 marks)

- (d) Integrate the following using integration by partial fractions method;
 - (i) $\int \frac{2x^2 7x 21}{(x+2)(x-1)(x+4)} \ dx$

(2 marks)

(ii) $\int \frac{6x+11}{(x-10)^2} dx$

(4 marks)

- Q4 (a) Find the area bounded below by $f(x) = -x^2 + 4x + 3$ and above by $g(x) = -x^3 + 7x^2 10x + 5$ over the interval $1 \le x \le 2$. Sketch the graph to show the region. (10 marks)
 - (b) Determine the surface area of the solid generated by rotating $y = \sqrt{9 x^2}$, $-2 \le x \le 2$ about the x-axis.

(10 marks)

Q5 (a) Show that every member of the family of functions $y = \frac{c}{x} + 2$ is a solution of the first order differential equation $\frac{dy}{dx} = \frac{1}{x}(2 - y)$ on the interval $(0, \infty)$, where C is any constant.

(4 marks)

- (b) Separable is type of the First Order Differential Equations, determine whether the following equations are separable;
 - (i) $\frac{dy}{dx} xy = x$

(2 marks)

CONFIDENTIAL

BFC15003

(ii)
$$\frac{dy}{dx} = xe^{y-x}$$
 (2 marks)

(iii)
$$\sin y \cos x \frac{dy}{dx} - \cos y \sin x = 0$$
 (2 marks)

(iv)
$$x \frac{dy}{dx} = x - 2y$$
 (2 marks)

(c) Homogeneous is a type of the First Order Differential Equations, Determine whether the following equations are homogeneous;

(i)
$$\frac{dy}{dx} = \frac{y - x}{y + x}$$
 (2 marks)

(ii)
$$\frac{dy}{dx} = x - y \tag{2 marks}$$

(iii)
$$\frac{dy}{dx} = \frac{xy}{x^2 - y^2}$$
 (2 marks)

(iv)
$$y \frac{dy}{dx} = x(lny - lnx)$$
 (2 marks)

- END OF QUESTIONS -

SEMESTER/SESSION : SEM I / 2020/2021

COURSE NAME

: CALCULUS

PROGRAMME CODE : FBFF

COURSE CODE

: BFC15003

FIGURE Q2(a)

FIGURE Q2(b)

SEMESTER/ SESSION: SEM II 2020/2021

COURSE NAME: CALCULUS

PROGRAMME: BFF COURSE CODE: BFC15003

Formulae LudeSinite Integrals		
Differentiation Rules	Indefinite Integrals	
$\frac{d}{dx}[k] = 0$, k constant	$\int k dx = kx + C$	
$\frac{d}{dx} \left[x^n \right] = nx^{n-1}$	$\int_{0}^{\infty} n \int_{0}^{\infty} x^{n+1} dx$	
ax	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \qquad n \neq -1$	
$\frac{d}{dx} \left[\ln x \right] = \frac{1}{x}$	$\int \frac{dx}{x} = \ln x + C$	
$\frac{d}{dx}[\cos x] = -\sin x$	$\int \sin x dx = -\cos x + C$	
$\frac{d}{dx}\left[\sin x\right] - \cos x$	$\int \cos x dx = \sin x + C$	
$\frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$	
$\frac{d}{dx}[\cot x] = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$	
$\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$	
$\frac{d}{dx}[\csc x] = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$	
$\frac{d}{dx}\left[e^{x}\right] = e^{x}$	$\int e^x dx = e^x + C$	
$\frac{d}{dx}[\cosh x] = \sinh x$	$\int \sinh x dx = \cosh x + C$	
$\frac{d}{dx}[\sinh x] = \cosh x$	$\int \cosh x dx - \sinh x + C$	
$\frac{d}{dx}[\tanh x] = \operatorname{sech}^2 x$	$\int \operatorname{sech}^2 x dx = \tanh x + C$	
$\frac{d}{dx}\left[\coth x\right] = -\operatorname{cosech}^{2} x$	$\int \operatorname{cosech}^2 x dx = -\operatorname{coth} x + C$	
$\frac{d}{dx}[\operatorname{sech} x] = -\operatorname{sech} x \tanh x$	$\int \operatorname{sech} x \tanh x dx = -\operatorname{sech} x + C$	
$\frac{d}{dx}\left[\operatorname{cosech} x\right] = -\operatorname{cosech} x \operatorname{coth} x$	$\int \operatorname{cosech} x \operatorname{coth} x dx = -\operatorname{cosech} x + C$	

SEMESTER/ SESSION: SEM I 2020/2021

COURSE NAME: CALCULUS

PROGRAMME: BFF

COURSE CODE. BFC15003

W 4		
1100	rmu	54 6x
1, ()	ши	1 22 C

<u> Pormulae</u>		
Trigonometric $\cos^2 x + \sin^2 x - 1$	Hiperbolic	
$\cos^2 x + \sin^2 x - 1$	$\sinh x = \frac{e^x}{2} \frac{e^{-x}}{2}$	
$1 + \tan^2 x = \sec^2 x$	$\cosh x = \frac{e^x + e^{-x}}{2}$	
$\cot^2 x + 1 - \csc^2 x $	$\cosh^2 x - \sinh^2 x - 1$	
$\sin 2x = 2\sin x \cos x$	$1 - \tanh^{\frac{5}{2}} x = \operatorname{sech}^{2} x$	
$\cos 2x = \cos^2 x - \sin^2 x$	$\coth^2 x - 1 = \operatorname{cosech}^2 x$	
$\cos 2x = 2\cos^2 x - 1$	$\sinh 2x = 2\sinh x \cosh x$	
$\cos 2x - 1 - 2\sin^2 x$	$\cosh 2x = \cosh^2 x + \sinh^2 x$	
$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	$\cosh 2x = 2\cosh^2 x - 1$	
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$\cosh 2x = 1 + 2\sinh^2 x$	
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$	
$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$	
$2\sin x \cos y = \sin(x+y) + \sin(x-y)$	$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$	
$2\sin x \sin y = -\cos(x+y) + \cos(x-y)$	$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$	
$2\cos x\cos y = \cos(x+y) + \cos(x-y)$		
Logarithm	Inverse Hiperbolic	
$a^x = e^{x \ln a}$	$\sinh^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right), \text{ any } x.$	
$\log_a x - \frac{\log_b x}{\log_b a}$	$\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right), x \ge 1$	
	$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)_{+} -1 < x < 1$	

TERBUKA

COURSE NAME: CALCULUS

COURSE CODE: BFC15003

Formulae

Area between two curves

Case 1- Integrating with respect to
$$x$$
: $A = \int_a^b [f(x) - g(x)] dx$
Case 2- Integrating with respect to y . $A = \int_c^d [f(y) - g(y)] dy$

Area of surface of revolution

Case 1- Revolving the portion of the curve about x-axis:
$$S = 2\pi \int_a^b y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

Case 2- Revolving the portion of the curve about y-axis:
$$S = 2\pi \int_{c}^{d} x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

Parametric curve- Revolving the curve about x-axis:
$$S = 2\pi \int_a^b y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Parametric curve- Revolving the curve about y-axis:
$$S = 2\pi \int_{c}^{d} x \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Arc length

x-axis:
$$L = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

y-axis: $L = \int_c^d \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$

Parametric curve:
$$L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Curvature

Curvature,
$$K = \frac{\begin{bmatrix} d^2 y \\ dx^2 \end{bmatrix}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}$$

Radius of curvature,
$$\rho = \frac{1}{\kappa}$$

$$\frac{\text{Curvature of parametric curve}}{\text{Curvature, K}} = \frac{|\dot{x}\ddot{y} - \dot{y}\ddot{x}|}{(\dot{x}^2 + \dot{y}^2)^{3/2}}$$

Radius of curvature,
$$ho=rac{1}{\kappa}$$