

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER I **SESSION 2020/2021**

COURSE NAME

: STATICS

COURSE CODE

: BNT 10303

PROGRAMME CODE

: BNT

EXAMINATION DATE : JAN / FEBRUARY 2021

DURATION

: 3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY

OPEN BOOK EXAMINATION

TERBUKA

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

Q1 (a) Figure Q1(a) shows a lamp of weight 20 kg is supported by using several cords which in equilibrium state. Calculate the tension developed in cords DE, DC, CA and CB.

(7 marks)

- (b) Figure Q1(b) shows a pot and its contents have a total weight of 50 kg. It is supported by three cables which are AB, AC and AD.
 - (i) Draw a free body diagram of the system

(3 marks)

- (ii) Calculate the unit vector u_{AB} , u_{AC} and u_{AD} along three points on that line (6 marks)
- (iii) Calculate the force in the supporting cables of F_{AB} , F_{AC} and F_{AD} when the system is in equilibrium.

 (4 marks)
- Q2 (a) Define the meaning of a varignon's theorem on moment concept and give ONE (1) example.
 - (b) Figure Q2(b) shows a door supported by a chain BA. The chain BA exerted a force of 20 N.
 - (i) Calculate the force unit vector, u_{BA} and its force, F_{BA} in Cartesian vector. (10 marks)
 - (ii) Calculate the moment of force F_{BA} about point O in Cartesian vector. (4 marks)
 - (iii) Calculate magnitude of the moment about the x-axis using triple scalar product.

 (3 marks)

(v)

		6			
Q3	(a)	Figure	e Q3(a) shows a truck with the weights of the various components.		
1		(i)	Calculate the equivalent resultant force.		
				(3 marks)	
		(ii)	Calculate the location of equivalent resultant force measured from p	ooint B. (3 marks)	
	(b)	Figure Q3(b) shows the articulated crane boom has a weight of 125 kg and acting at the center of gravity at G . It is supported a load of 600 kg.			
		(i)	Draw a free body diagram (FBD) of the crane boom.	(4 marks)	
		(ii)	Calculate the force acting at the pin A and the force in the hydrau BC .	lic cylinder	
				(10 marks)	
Q4	(a)	Define	zero force members in simple trusses model.	(2 marks)	
				(2 marks)	
	(b)	Determine the force in each member of truss and state if the members are in tension or compression. Set $P_1 = 0$ kN and $P_2 = 20$ kN. The trusses is illustrated in Figure Q4(b). (hint: apply method of joint, assume: pin G acting force only at x-axis).			
		(i)	Calculate the force in member GB, AF and AB.	(8 marks)	
		(ii)	Calculate the force in member BF and BC	(2 marks)	
		21125		(2 mains)	
		(iii)	Calculate the force in member FC and FE.	(? marks)	
		(iv)	Calculate the force in member ED, EC and DC.		

TERBUKA

(3 marks)

(3 marks)

State whether all the members are in tension (T) or compression (C).

Q5	(a)	Draw an example of reaction force on a pin type support and define a tw member.	d define a two-force	
			(4 marks)	

- (b) Figure Q5(b) shows a tractor boom supports the uniform mass of 700 kg in the bucket which has a center of mass at G and this system is in equilibrium. The boom supported by two hydraulic cylinders which are hydraulics AB and CD. (hint: The load is supported equally on each side of the tractor by a similar mechanism).
 - (i) Draw a free body diagram of a bucket only.

(2 marks)

(ii) Draw a free body diagram of the whole boom system.

(2 marks)

- (iii) Calculate the force in hydraulic cylinder AB and resultant force at pin E.

 (6 marks)
- (iv) Calculate the force in hydraulic cylinder CD and resultant force at pin F. (6 marks)
- Q6 (a) Define a wedge in friction principle and describe ONE (1) example application of wedge and draw its free body diagram.

 (4 marks)
 - (b) Figure Q6(b) shows the man tried to pulls a cord with a force large enough to just to move the crate. The crate weighted of 80 kg and the coefficient of static friction between floor and crate is $\mu_s = 0.3$ (hint: The pulleys are frictionless)
 - (i) Draw the free body diagram of the cables and the crate.

(5 marks)

(ii) Calculate the angle, θ between the crate and the cord B.

(8 marks)

(iii) Calculate the reaction force at cord B and determine the smallest force, F_H the man must exert.

(3 marks)

-END OF QUESTIONS

TERBUKA

CONFIDENTIAL

SEMESTER / SESSION : SEM I / 2020/2021

PROGRAMME CODE: BNT

COURSE NAME : STATICS

COURSE CODE : BNT 10303

Figure Q1(a)

Figure Q1(b)

erene. Prise is teruprer commensations Auren Saft or Grand for three Elevanos

SEMESTER / SESSION : SEM I / 2020/2021

PROGRAMME CODE: BNT

OURSE NAME

: STATICS

COURSE CODE : BNT 10303

Figure Q2(b)

Figure Q3(a)

TERBUKA

SEMESTER / SESSION : SEM I / 2020/2021

PROGRAMME CODE: BNT

COURSE NAME

: STATICS

COURSE CODE : BNT 10303

Figure Q3(b)

Figure Q4(b)

TERBUKA

neus suduka gerangan neus kase. Peneus da ana da saka a saka da saka ya

SEMESTER / SESSION : SEM I / 2020/2021

PROGRAMME CODE: BNT

COURSE NAME

: STATICS

COURSE CODE : BNT 10303

Figure Q5(b)

Figure Q6(b)

Table at the problem to the state of the sta