

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER I SESSION 2020/2021

COURSE NAME

: HYDROLOGY

COURSE CODE

: DAC 20502

PROGRAMME CODE

: DAA

EXAMINATION DATE

: JANUARY / FEBRUARY 2021

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY. OPEN BOOK

EXAMINATION

TERBUKA

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

Ω1	(a)	Dogovila Gold of hydrology contributions add to the delication	
Q1	(a)	Describe field of hydrology contributions which related to civil engineers.	(2 marks)
	(b)	Discuss water of the world from all locations.	(3 marks)
	(c)	Give three (3) components of surface water.	(3 marks)
	(d)	Table 1 shows the reservoir data collected after a few days of observation.	Calculate:
		(i) Total volume of inflow in 15 days (m³).	(2 marks)
		(ii) Total volume of outflow in 15 days (m ³).	(2 marks)
		(iii) Total volume of infiltration (m ³).	(2 marks)
		(1v) Total volume of precipitation (m ³).	(2 marks)
		(v) Total volume of evaporation (m ³).	(2 marks)
		(vi) Change in storage in 15 days (m ³).	(2 marks)
Q2	(a)	Define Double Mass Curve in providing consistent precipitation data.	(2 marks)
	(b)	Explain the Double Mass Curve procedures in solving inconsistent rain gau	ge data. (6 marks)
	(c)	By referring to Table 2 , calculate the adjusted precipitation (mm) from 201	0 to 2013. (4 marks)
	(d)	Table 3 shows the readings collected by six rain gauge stations. Calculate:	
		(i) Amount of missing precipitation data (mm) for station D.	(6 marks)
		(ii) Average precipitation depth (mm) in the basin.	(2 marks)

Q3	(a)	Define the occurrence of evaporation as a main component in hydrologic cy	cle. (2 marks)
	(b)	Describe three (3) meteorology factors affecting evaporation occurrence.	(6 marks)
	(c)	Table 4 shows the data for drainage area. Calculate. (i) Rate of runoff (m/month).	(2 marks)
		(ii) Rate of evaporation (m/month)	(2 marks)
	(d)	Mass Transfer Techniques is based on turbulent transfer of water vaporatmosphere. By referring to Table 5 , use Meyer equations to calculate:	our to the
		(i) Vapour pressure (in Hg) for water temperature.	(2 marks)
		(ii) Vapour pressure (in Hg) for air temperature.	(2 marks)
		(iii) Rate of evaporation (in/day).	(2 marks)
	(e)	Ladino Clover crop mean's monthly consumptive use coefficient is 0.87, a monthly temperature of 75 °F and an average value of daytime of 9.5%. monthly consumptive (in).	
			(2 marks)
Q4	(a)	Describe two (2) elements represented by hydrograph shape.	(2 marks)
	(b)	Explain three (3) types of terminology used in hydrograph shape.	(6 marks)
	(c)	Table 6 shows the precipitation data for Intensity Duration Frequency study (1) Arrange precipitation values in descending order.	(1 mark)
		(ii) Calculate return period.	(1 mark)
		(iii) Interpolation for 10-year intensity duration frequency.	(4 marks)

CONFIDENTIAL

DAC 20502

		(v) Convert precipitation depth (in) to intensity value (in/hour) 5 min duration. (2 marks)
Q5	(a)	Define surface runoff which is flowing off due to precipitation occurrence. (2 marks)
	(b)	Explain the paths of runoff after a rainfall occurrence (4 marks)
	(c)	Describe wire gauge as a gauge used to measure the water surface elevation. (2 marks)
	(d)	A storm hydrograph is given in Table 7 with the corresponding excess rainfall. The time interval is an hour between readings. Determine the unit hydrograph.
		(12 marks)
Q6	(a)	List two (2) assumptions that can be made for direct runoff hydrograph. (2 marks)
	(b)	Describe procedures to determine unit hydrograph. (6 marks)
	(c)	By referring to Table 8, determine the river flow (m³/s) which contributed by baseflow.
		(12 marks)
Q7	(a)	Define specific yield as a groundwater parameter. (2 marks)
	(b)	Explain Pulse Method which applied in reservoir routing. (6 marks)
	(c)	By referring to Table 9 , determine the values of peak flow (m³/s) by using Snyder's Method. (12 marks)

- END OF QUESTIONS -

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: SEM 1 / 2020/2021

COURSE NAME : HYDROLOGY

PROGRAMME CODE : DAA COURSE CODE : DAC20502

Table 1

Item	Value
Reservoir area	$1.59 \times 10^7 \mathrm{m}^2$
Observation duration	0.5 month
Average inflow	$12.7 \text{ m}^3/\text{s}$
Average outflow	20833 m ³ /hour
Average infiltration	1.5 mm/15-day
Average precipitation	10.5 cm/15-day
Total evaporation	4.5 mm/15-day

Table 2

Item	Value
Original slope	0.19
Adjusted slope	0.25
Original Precipitation 2010	33.5 mm
Original Precipitation 2011	29.3 mm
Original Precipitation 2012	33.9 mm
Original Precipitation 2012	31.7 mm

Table 3

Station	Amounts of Precipitation	Normal Annual Precipitation
	(cm)	(cm)
A	9	95.9
В	9.5	99.3
С	11.9	111.9
D	Missing	113.3
Е	9.7	99.5
F	11.1	119.9

CONFIDENTIAL

DAC 20502

FINAL EXAMINATION

SEMESTER/SESSION: SEM 1 / 2020/2021 COURSE NAME : HYDROLOGY

PROGRAMME CODE: DAA COURSE CODE: DAC20502

Table 4

Item	Average	Average	Drainage	Drainage
	Precipitation	Monthly Runoff	Area	Arca
Value	93 mm/month	$137 \text{m}^3/\text{s}$	1333100 ha	1.3 X 10 ¹⁰ m ²

Table 5

Item	RII	Twater	W_{speed}	T_{air}	Cpanempirical
Value	17%	57 °F	9.5 mph	80 °F	0.35
The Manual Control of the State					CHARLES THE
Temperature (°F)	50	60	70	80	90
Vapour Pressure (in Hg)	0.36	0.52	0.74	1.03	1.42

Table 6

	Precipitation (in) of duration:				
No.	5 min	15 min	25 min	35 min	
1	0.13	0.33	0.51	0.73	
2	0.11	0.39	0.49	0.69	
3	0.09	0.29	0.53	0.71	
4	0.15	0.41	0.47	0.79	
5	0.19	0.37	0.55	0.67	
6	0.07	0.35	0.59	0.77	
1	0.17	0.31	0.57	0.75	
8	0.21	0.43	0.45	0.63	
9	0.23	0.27	0.41	0.65	
10	0.05	0.45	0.43	0.61	

FINAL EXAMINATION

SEMESTER/SESSION : SEM 1 / 2020/2021 COURSE NAME : HYDROLOGY

PROGRAMME CODE : DAA COURSE CODE : DAC20502

Table 7

Time (hour)	Rainfall Excess (mm)	Direct Discharge (m³/s)
1	20	20
2	60	140
3	40	400
4		1150
5		4450
6		9700
7		9480
8		4360
9		1560
10		940
11		525
12		375
13		195

Table 8

Unit Hydrograph Ordinates and Baseflow				
Date	Time	UH Ordinates	Baseflow	
Date	(hour)	$(m^3/s.cm)$	(m^3/s)	
11/11	0100	0	7	
11/11	0400	19	7	
11/11	0700	31	7	
11/11	1000	51	9	
11/11	1300	75	9	
11/11	1600	59	9	
11/11	1900	39	9	
11/11	2200	31	11	
12/11	0100	19	11	
12/11	0400	11	11	
12/11	0700	0	13	
Effe	ctive Rainfall Hy	etograph Ordinat	es	
Time	3	6	9	
(hour)	3	6	9	
Rainfall Excess	1.1	1.9	3.1	
(cm)	1.1	1.7	J.1	

FINAL EXAMINATION

SEMESTER/SESSION : SEM 1 / 2020/2021 COURSE NAME : HYDROLOGY PROGRAMME CODE : DAA COURSE CODE : DAC20502

Table 9

Item	Value
I ength of main stream from outlet	15 km
I ength along main stream from outlet to catchment's centroid	5 km
Desired duration of effective rainfall	2 hour
Area of catchment	73 km ²
Peak coefficient	0.59
Time coefficient	1.5