

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) **SEMESTER I SESSION 2020/2021**

COURSE NAME

: INDUSTRIAL ENGINEERING

COURSE CODE

: DAM 22103

PROGRAMME CODE : DAM

EXAMINATION DATE : JANUARY / FEBRUARY 2021

DURATION

: 3 HOURS

INSTRUCTION

1) ANSWER FIVE (5) QUESTIONS

ONLY.

2) THE ANSWER BOOKLET NEED TO BE SUBMITTED 15 MINUTES AFTER THE EXAMINATION END. (SUBMIT

ALL THE DOCUMENTS IN PDF)

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

Q1 (a) The Sahabat Manufacturing Sdn Bhd owns three respective factories in Sepang, Penang and Ipoh, which have been distributing products to the retail shops in three states namely Johor Bahru, Negeri Sembilan and Kuala Lumpur. Table 1 summarizes factory availabilities, projected store demands and unit shipping cost (in RM). Calculate the minimum shipment cost for distributing the product.

(10 marks)

Table 1: Data of factory availabilities, projected store demands and unit

- Company of the Comp	om	m m) was gunt	VI	
Sepang Penang		Constan		
	Johor Bahru	Negeri Sembilan	Kuala Lumpur	Supply (units)
Sepang	4	3	2	35
Penang	6	7	8	50
Ipoh _	8	1	5	50
Demand (units)	30	65	40	135

(b) Table 2 gives the map coordinates and the shipping loads for a set of cities that Sentiasa Jaya Enterprise wish to connect through a central distribution hub. Assume that, the cost per unit movement are the same within both places.

Table 2: Coordinates & shipping loads

City	Map coordinate (x,y)	Shipping load			
A	(5,10)	5			
В	(6,8)	10			
С	(4,9)	15			
D	(9,5)	5			
Е	(7,9)	15			
F	(3,2)	10			
G	(2,6)	5			

i) Compute the optimum location for this central hub.

(7 marks)

ii) If the cost is RM2.50/distance, calculate the total cost for this optimum location.

(3 marks)

A work study was conducted for a process which involves 6 work elements consecutively. **Table 3** shows the process cycle time in minutes, taken by stop watch using 'snap back' technique. A worker's salary is RM 2,000 per month. The allowances given are 5 % for fatigue, 6 % for delay, and 7 % for personal relief.

Table 3: The process cycle time in minutes

Work Elements			Cycle Time (minutes)						
	Assembly Methods	Rating	1	2	3	4	5		
A	Manual	90%	5.0	4.3	4.5	4.8	4.6		
В	Manual	85%	12.3	13.4	10.0	14.5	13.0		
C	Automatic		4.0	4.0	4,0	4.0	4.0		
D	Manual	110%	8.9	7.7	9.0	9.3	8.6		
L	Manual	115%	15.8	14.6	17.3	18.0	16.7		
F	Automatic		6.0	6.0	6.0	6.0	6.0		

i) Calculate the standard time for the whole assembly process.

(5 marks)

ii) If the demand is 10,000 units per month, estimate the number of operators required for the assembly process. The company is operating 20 days per month and a single 8 hour shift per day.

(5 marks)

iii) If the company willing to employ 50 workers, estimate the overtime cost per day for each worker for the production of 10,000 units per month. Assume only 80 % workers are available for overtime and the overtime pay rate is 2 times of the normal wage.

(10 marks)

Q3 Forecasting is the method of estimating the amount of customer future demand in order for product to be supplied. Referring to **Table 4**, forecast the demand in October using the following methods;

Table 4: Demand for product to be supplied

Month	Demand
January	23
February	19
Mac	20
April	22
May	22
June	18
July	25
August	23
September	22
October	Foct

i) Naive method

(2 marks)

ii) 4 – period simple moving average

(3 marks)

iii) Simple exponential smoothing with $\alpha=0.3$. Assume the forecast for month of June is 21

(5 marks)

iv) Using regression technique, forecast the demand for month of October and December.

(10 marks)

TERBUKA

A salt packaging company managed to collect a total of 20 subgroup of size n=4 from its packaging process. **Table 5** shows the weight in kg of the sample. Factors for control limit are given in **Table 6** (see appendix). Illustrate X-bar and R control charts for the salt packaging process and give some comment on the process performance.

(20 marks)

Table 5: Weight of salt

No of		Welght	of salt (kg)	
Subgroup	X1	X2	Х3	X4
1	4.6	1.0	2.0	4.5
2.	3.8	3.0	2.0	5.0
3	3.6	2.9	2.9	1.8
4	4.4	1.9	3.8	3.8
5	2.5	2.8	3.5	3.6
6	1.9	4.9	3.7	3.2
7	1.6	7.0	4.9	4.0
8	4.0	3.2	3.6	7.0
9	3.0	4.4	2.9	1.8
10	3.1	2.6	3.4	2.0
11	3.8	1.5	2.5	2.6
12	2.0	2.4	3.6	3.5
13	2.2	2.2	3.3	2.1
14	3.8	4.0	1.8	4.1
15	2.5	2.5	3.6	3.6
16	2.2	4.1	2.1	3.1
17	3.8	4.6	3.2	2.0
18	2.1	2.5	2.1	3.7
19	3.0	3.0	2.0	2.6
20	3.3	3.2	2.1	2.8

Q5 (a) Table 7 represents the frequency of paint defects from an automotive assembly plant.

Table 7: Frequency of paint defects

Paint Defect	Frequency
Orange Peel	12
Sealer Under	4
Dirt in Paint	65
Thin Paint	5
Off-Color	2
Sag	21
Scratch	3
Other	1

i) Calculate the percentage of total and cumulative percentage for each defect.

(4 marks)

- ii) Sketch the Pareto Chart to identify the major problem of paint defects. (6 marks)
- (b) A manufacturing company has an assembly line consists of 3 machines and 4 types of jobs, as shown in **Table 8**. The production manager has two (2) optional sequences which are S4-S1-S3-S2 and S3-S1-S2-S4. Interpret which one is a better job sequence based on total makespan and idle time.

(10 marks)

Table 8: Processing time

Machine	Processing time (hour)							
Machine	S1	S2	S 3	S4				
A	1	3	8	3				
В	6	2	5	4				
С	5	3	1	2				

Production Schedule for product A calls for 100 units in week 2, 150 units in week 5, and 200 units in week 7. The lead times for components B, and D are 1 week, and for the other components the lead time is 2 weeks. No safety stock is required for components B, C, D, E, F and G. The L4L lot-sizing rule is used for components B, E and G; the POQ lot-sizing rule (P=3) is used for component D. Component F has an FOQ of 250 units, and C has an FOQ of 100 units On hand are 50 units of B, 50 units of C, 200 units of D, 50 units of E, and 300 units of F. Component B and G has a scheduled receipt of 50 units in week 1. Based on your analysis;

i) Develop a material requirements plan for component G.

(10 marks)

ii) Develop a material requirement plan for component F.

(10 marks)

- - END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2020 /2021

PROGRAMME CODE : DAM

COURSE NAME

: INDUSTRIAL ENGINEERING

COURSE CODE

: DAM22103

Formula:

$$TC = FC + VC(Q)$$

$$f(x,y) = \sum_{i=1}^{n} w_i (|x - a_i| + |y - b_i|) \rightarrow Minisum formula$$

$$f(x,y) = max(|x - a_i| + |y - b_i|)$$

First point: $(x_1, y_1) = 0.5(c_1 - c_3, c_1 + c_3 + c_5)$ Minimax formula

Second point: $(x_2, y_2) = 0.5(c_2 - c_4, c_2 + c_4 - c_5)$

 $Normal\ time = \frac{(Total\ observation\ time)x(Productive)x(Rating)}{Total\ Output}$

$$a = \frac{\sum y - b \sum x}{n} \qquad b = \frac{n \sum (xy) - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$Q^* = \sqrt{\frac{2DS}{H}} \qquad TC = \frac{D}{Q}S + \frac{Q^*}{2}H$$

$$Q^* = \sqrt{\frac{2DS}{H(1-d/p)}} \qquad TC = \frac{D}{Q}S + \frac{Q^*}{2}H*(1-d/p) \qquad d = \frac{D}{\text{working days/year}}$$

$$d = \frac{D}{\text{working days/year}}$$

TERBUKA

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2020 /2021

PROGRAMME CODE : DAM

COURSE NAME : INDUSTRIAL ENGINEERING COURSE CODE : DAM22103

Table 6

	CHART FOR AVERAGES			CHART FOR	RSTAND	ARD DE	VIATIO:	NS		CHART FOR RANGES				
OBSERVATIONS IN		CTORS F		FACTOR FOR CENTRAL LINE		FACTO CONTRO		S	FACTOR FOR CENTRAL LINE	FACTORS FOR CONTROL LIMITS				
SAMPLE, n	A	A_2	A_3	C4	R_1	B_4	B_5	B_{6}	d ₁	$d_{\mathbf{L}}$	D_1	D_2	D_3	D_4
2	2.121	1.880	2.659	0.7979	0	3.267	0	2.606	1.128	0.853	0	3.686	0	3.26
3	1.732	1.023	1.954	0.8862	0	2.568	0	2.276	1.693	0.888	0	4.358	0	2.57
4	1.500	0.729	1.628	0.9213	0	2.266	0	2.088	2.059	0.880	0	4.698	0	2.28
5	1.342	0.577	1.427	0.9400	0	2.089	0	1.964	2.326	0.864	0	4.918	0	2.11
6	1.225	0.483	1.287	0.9515	0.030	1.970	0.029	1.874	2.534	0.848	0	5.078	0	2.00
7	1.134	0.419	1.182	0.9594	0.118	1.882	0.113	1.806	2.704	0.833	0.204	5.204	0.076	1.92
8	1.061	0.373	1.099	0.9650	0.185	1.815	0.179	1.751	2.847	0.820	0.388	5.306	0.136	1.86
9	1.000	0.337	1.032	0.9693	0.239	1.761	0.232	1.707	2.970	0.808	0.547	5.393	0.184	1.81
10	0.949	0.308	0.975	0.9727	0.284	1.716	0.276	1.669	3.078	0.797	0.687	5 469	0.223	1.77
11	0.905	0.285	0.927	0.9754	0.321	1.679	0.313	1.637	3.173	0.787	0.811	5.535	0.256	1.74
12	0.866	0.266	0.886	0.9776	0.354	1.646	0.346	1.610	3.258	0.778	0.922	5.594	0.283	1.71
13	0.832	0.249	0.850	0.9794	0.382	1.618	0.374	1.585	3.336	0.770	1.025	5.647	0.307	1.69
14	0.802	0.235	0.817	0.9810	0.406	1.594	0.399	1.563	3.407	0.763	1.118	5.696	0.328	1.67
15	0.775	0.223	0.789	0.9823	0.428	1.572	0.421	1.544	3.472	0.756	1.203	5.741	0.347	1.65
16	0.750	0.212	0.763	0.9835	0.448	1.552	0.440	1.526	3.532	0.750	1.282	5.782	0.363	1.63
17	0.728	0.203	0.739	0.9845	0.466	1.534	0.458	1.511	3.588	0.744	1.356	5.820	0.378	1.62
18	0.707	0.194	0.718	0.9854	0.482	1.518	0.475	1.496	3.640	0.739	1.424	5.856	0.391	1.60
19	0.688	0.187	0.698	0.9862	0.497	1.503	0.490	1.483	3.689	0.734	1.487	5.891	0.403	1.59
20	0.671	0.180	0.680	0.9869	0.510	1.490	0.504	1.470	3.735	0.729	1.549	5.921	0.415	1.58

Copyright ASTM, 1916 Race Street, Philadelphia, PA, 19103, Reprinted with permission.

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2020 /2021

PROGRAMME CODE : DAM

COURSE NAME

. INDUSTRIAL ENGINEERING

COURSE CODE : DAM22103

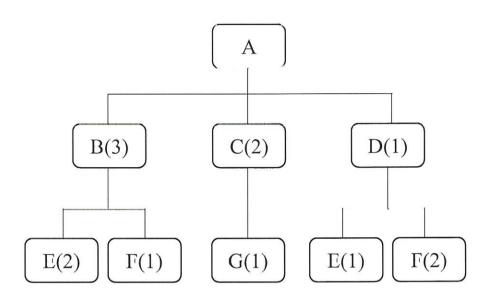


Figure Q6: Bill of materials for Product A

10