

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) **SEMESTER I SESSION 2020/2021**

COURSE NAME

PHYSICS FOR ENGINEERING

TECHNOLOGY

COURSE CODE

DAK 13003

PROGRAMME CODE : DAK

EXAMINATION DATE :

JANUARY / FEBRUARY 2021

DURATION

3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY.

OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

TERBUK ONFIDENTIAL

CONFIDENTIAL

DAK 13003

- Q1 (a) SI unit a standard unit used by scientists and engineers worldwide.
 - (i) An athlete ran 10 km in half an hour while losing 3 kg of body mass. State TWO(2) derived units based on this statement.

(4 marks)

(ii) A 2.0 kg of water fills a volume of 195 mL. Calculate its density in SG. [1 mL = 1×10^{-6} m³]

(4 marks)

- (b) Explain value, dimensions and unit in a table form, using suitable examples.

 (6 marks)
- (c) Show the steps to obtain the final SI units of force (kgms⁻¹), pressure (kgm⁻¹s⁻²) and work (kgm²s⁻²) from the base unit of mass (kg), length (m) and time (s).

 (6 marks)
- Q2 (a) Write the magnitude and direction when a student walks 5 meter to the west. (2 marks)
 - (b) Given four vectors of **A**, **B**, **C**, and **D**. The value of $A = 7 \text{ m} \angle 30$, $B = 10 \text{ m} \angle 240^\circ$, C = 15 m, $N 20^\circ$ W and D = 18 m bearing of 220°.
 - (i) Draw all vectors in x-y axes. (4 marks)
 - (ii) Find the magnitude and direction of resultant vector $\mathbf{E} = \mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D}$. (14 marks)

Q3 (a) "Forces always come in pairs. The forces in pair are equal in magnitude and opposite in direction.". Sketch a diagram to explain this statement.

(2 marks)

- (b) **Figure Q3 (b)** shows a wooden frame is attached to a 1.2 kg box through a smooth, frictionless pulley. The box is located on an inclined, rough surface with the coefficient of friction 0.3. The direction of the system movement is shown in the figure above.
 - (i) Calculate the wooden frame mass (kg) if the system accelerates at 13 ms?.
 - (ii) Calculate the tension of the string, T in Newton.
 - (iii) Calculate the normal force of the box, N in Newton.

(12 marks)

- (c) A 25.0 N force with an angle of 30° is pushing a 800-gram block to the right side on a rough surface.
 - (i) Sketch the free body diagram (FBD) for this scenario.
 - (ii) Calculate the coefficient of friction to achieve zero acceleration.

(6 marks)

- Q4 (a) A girl tries to slide a box by applying a 200 N horizontal force, F on the box as shown in **Figure Q4 (a)**. The force is applied 30° above the horizontal surface. The frictional force opposing the motion is 50 N and he targets to slide the box 2.5 m to the right.
 - (i) Sketch the Free-body diagram (FBD) of acting forces on the box.
 - (ii) Find the work done by horizontal force, F.
 - (iii) Find the work done by frictional force, f.
 - (iv) Find the total work done.

(8 marks)

- (b) Consider a ball rolling on a smooth surface as shown in **Figure Q4** (b).
 - (i) Calculate the ball speed at point B if it starts from rest at point A.

(4 marks)

(ii) Calculate the ball initial velocity at point A if the ball reached the end point, C with a speed of 9 m.s⁻¹.

(8 marks)

Q5 (a) Define buoyant force.

(2 marks)

- (b) A 5 cm radius of plastic sphere floats in water while 20% of its volume is above the water surface. The plastic and water density are 1.7×10^3 kg.m⁻³ and 1000 kg.m⁻³.
 - (i) Calculate the mass of the sphere.
 - (ii) Calculate the buoyant force acting on the sphere
 - (iii) Calculate the buoyant force of the sphere when it is fully immersed in the water.
 (10 marks)
- (c) A 130 cm depth of oil sit on top of a water with 150 cm deep. The oil and water density are 600 kg.m^{-3} and 1000 kg.m^{-3} while the atmospheric pressure is $101 \times 10^3 \text{ Pa}$.
 - (i) Calculate the absolute pressure at the oil-water interface.
 - (ii) Calculate the absolute pressure at the bottom of the container.

(8 marks)

- Q6 (a) Sketch a diagram for each of the terms below.
 - (i) Stress.
 - (ii) Strain.
 - (iii) Elasticity.

(6 marks)

(b) Two rectangular rods of 2.0 m long have a cross sectional area of 4 cm². One of them is a steel rod (Y = 20×10^{10} Pa) and another one is an aluminium rod (Y = 7×10^{10} Pa). Both rods are pressed by a milling machine with 3000 N of force. Compare which has the higher elongation between the two rods.

(8 marks)

- (c) A rectangular block of jelly has an original dimension of 10 cm x 10 cm x 3 cm when no force is applied to it. When a shear force of magnitude 0.50 N is applied to the upper surface of the block, the surface is displaced 0.9 cm relative to the fixed lower surface as shown in **Figure Q6 (c)**.
 - (i) Calculate the shear stress.
 - (ii) Calculate the shear strain.
 - (iii) Calculate the shear modulus of the jelly.

(6 marks)

- Q7 (a) Convert the following temperature values.
 - (i) $-45 \degree \text{ F to } \degree \text{ C}$.
 - (ii) 150 ° C to ° F.
 - (iii) -283 ° C to ° F.
 - (iv) 65 ° C to K.
 - (v) 90 K to ° C.

(10 marks)

(b) A certain amount of heat is added to a mass of aluminium and its temperature is raised by /0 K. Suppose that the same amount of heat is added to the same mass of a copper. Calculate how much does the copper temperature raise? Given that $C_{AI} = 0.90$ kJ/(kg.K) and $C_{Cu} = 0.585$ kJ/(kg.K).

(6 marks)

- (c) A copper rod has a length of 10 cm at 25 ° C (α copper = 17×10^{-6} / ° C).
 - (i) Calculate the new rod length when it is placed in a boiling water.
 - (ii) Calculate required temperature to make the rod length to be 10.05 cm.

(4 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER/SESSION: SEM I 2020/2021

COURSE NAME

: PHYSICS FOR ENGINEERING

TECHNOLOGY

PROGRAMME CODE: DAK

COURSE CODE

: DAK 13003

Figure Q3(b)

Figure Q4(a)

Figure Q4(b)

Figure Q6 (c)

FINAL EXAMINATION

SEMESTER/SESSION: SEM I 2020/2021

COURSE NAME

: PHYSICS FOR ENGINEERING

PROGRAMME CODE: DAK

TECHNOLOGY

: DAK 13003 COURSE CODE.

List of formula

$$\rho = \frac{m}{V}$$

$$W \stackrel{\wedge}{\longleftarrow} V$$

$$|R| = \sqrt{\sum R_x^2 + \sum R_y^2}$$

$$\tan \theta - \frac{\sum R_y}{\sum R_x}$$

$$\Sigma F = \Sigma m \times a$$

$$f = \mu N$$

$$W = mg$$

$$g = 9.81 \text{ m.s}^{-2}$$

$$W = Fd$$

$$W = Fs$$

$$PE = mgh = Joule$$

$$KE = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

$$PE = KE$$

$$F_B = \rho_f V_{obj} g$$

$$W = \rho_{obj} V_{obj} g$$

$$V_{sphere} = \frac{4}{3}\pi r^3$$

$$P = \frac{F}{A}$$

$$P = P_{atm} + \rho g h$$

Stress,
$$\sigma = \frac{F}{A}$$

Strain,
$$\varepsilon = \frac{\Lambda l}{L_0}$$

$$Y = \frac{\sigma}{\varepsilon}$$

$$\sigma s = \frac{F}{A}$$

$$\varepsilon s = \frac{\Delta x}{y}$$

$$S = \frac{\sigma s}{\varepsilon s}$$

$$T_F = 1.8 T_C - 32$$

$$T_K = T_C + 273.15$$

$$Q = mC_p \Delta T$$

$$L = L_o(1 + \alpha \Delta T)$$