

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER II SESSION 2020/2021

COURSE NAME : ADVANCED DIGITAL CONTROL

SYSTEMS

COURSE CODE : MEM10203

PROGRAMME CODE : MEE

EXAMINATION DATE : JULY 2021

DURATION : 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

MEM 10203

Q1 Consider the digital control system shown in **Figure Q1**. The sampling period is assumed to be 0.2 second and the type of controller used in the system is a compensator.

$$G_D(z) = \frac{z - 0.6703}{z - 0.2543}$$

$$G(z) = \frac{0.01758 K (z + 0.8760)}{(z - 1)(z - 0.6703)}$$

(a) Determine the breakin and breakaway point.

(10 marks)

(b) Sketch the root locus of the system.

(2 marks)

(c) Determine the value of gain K for a stable system using Jury stability.

(8 marks)

Q2 (a) Compose the transfer function C(z)/R(z) of the system in **Figure Q2(a)** by using signal flow graph method.

(15 marks)

- (b) Consider the system shown in **Figure Q2(b)**.
 - (i) Obtain the characteristic equation of the systems.

(3 marks)

(ii) Investigate the range of *K* to ensure the system is stable using bilinear transformation and Routh stability criterion.

(10 marks)

(iii) If K = 2.5, analyze the stability of the system.

(2 marks)

Q3 The state equation for Autonomous Underwater Vehicle (AUV) system is defined as follow:

$$x(k+1) = Gx(k) + Hu(k)$$

where

$$G = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \text{ and } H = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

Design Pole Placement controller for the system such that the system have the closed-loop poles at $z_1 = 0.1$, $z_2 = 0.3$ and $z_3 = 0.7$.

(25 marks)

Q4 (a) Based on pulse transfer function representation of closed loop system. Evaluate either closed loop system shown in **Figure Q4(a)** posses closed loop transfer function as described below:

$$C(z) = \frac{G_3(z)G_1G_2(z)R(z)}{1 + HG_3(z)G_2G_1(z)}$$

(5 marks)

(b) Construct the discrete-time state-space representation of the essential oil steam distillation system described below:

$$C(s) = \frac{Y(s)}{U(s)} = \frac{4}{(s^2 + 6s)}$$

Given that the sampling period T=0.3.

(20 marks)

-END OF QUESTIONS -

SEMESTER / SESSION : SEM II / 2020/2021 PROGRAMME CODE : MEE COURSE NAME : ADVANCED DIGITAL COURSE CODE : MEM10203

CONTROL SYSTEMS

Figure Q1: A digital control system

Figure Q2(a): A system

SEMESTER / SESSION : SEM II / 2020/2021 PROGRAMME CODE : MEE COURSE NAME : ADVANCED DIGITAL COURSE CODE : MEM10203

CONTROL SYSTEMS

Figure Q2(b): A system

Figure Q4(a): A closed loop system

SEMESTER / SESSION : SEM II / 2020/2021 PRO COURSE NAME : ADVANCED DIGITAL COU

CONTROL SYSTEMS

PROGRAMME CODE: MEE

COURSE CODE : MEM10203

Table 1: Table of z-transform

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.	_9	_	Kronecker delta $\delta_0(k)$ 1, $k = 0$ 0, $k \neq 0$	1
2.	, ·	_	$\delta_0(n-k) \ 1, n=k \ 0, n \neq k$	z^{-k}
3.	$\frac{1}{s}$	1(t)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e^{-at}	e^{-akT}	$\frac{1}{1-e^{-aT}z^{-1}}$
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
6.	$\frac{2}{s^3}$	t^2	$(kT)^2$	$\frac{T^2 z^{-1} (1 + z^{-1})}{(1 - z^{-1})^3}$
7.	$\frac{6}{s^4}$	t ³	$(kT)^3$	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$
8.	$\frac{a}{s(s+a)}$	$1-e^{-at}$	$1 - e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT}-e^{-bkT}$	$\frac{(e^{-aT} - e^{-bT})z^{-1}}{(1 - e^{-aT}z^{-1})(1 - e^{-bT}z^{-1})}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe^{-akT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1-akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$

SEMESTER / SESSION : SEM II / 2020/2021 COURSE NAME : ADVANCED DIGITAL

CONTROL SYSTEMS

PROGRAMME CODE: MEE

COURSE CODE : MEM10203

Table 1 : Table of z-transform (continued)

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
12.	$\frac{2}{(s+a)^3}$	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{T^2 e^{-aT} (1 + e^{-aT} z^{-1}) z^{-1}}{(1 - e^{-aT} z^{-1})^3}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$
14.	$\frac{\omega}{s^2+\omega^2}$	sin ωt	sin ωkT	$\frac{z^{-1}\sin \omega T}{1 - 2z^{-1}\cos \omega T + z^{-2}}$
15.	$\frac{s}{s^2+\omega^2}$	cos ωt	cos ωkT	$\frac{1 - z^{-1}\cos\omega T}{1 - 2z^{-1}\cos\omega T + z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	$e^{-at} \sin \omega t$	$e^{-akT}\sin\omega kT$	$\frac{e^{-aT}z^{-1}\sin\omega T}{1-2e^{-aT}z^{-1}\cos\omega T+e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-at}\cos\omega t$	$e^{-akT}\cos\omega kT$	$\frac{1 - e^{-aT}z^{-1}\cos\omega T}{1 - 2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
18.			a^k	$\frac{1}{1-az^{-1}}$
19.			a^{k-1} $k = 1, 2, 3, \dots$	$\frac{z^{-1}}{1-az^{-1}}$
20.			<i>ka</i> ^{k - 1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.			$k^2 a^{k-1}$	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.			$k^3 a^{k-1}$	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.			$k^4 a^{k-1}$	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$
24.	,		$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$
25.			$\frac{k(k-1)}{2!}$	$\frac{z^{-2}}{(1-z^{-1})^3}$
26.		k(k-1)	$\frac{(m-1)!}{(m-1)!}$	$\frac{z^{-m+1}}{(1-z^{-1})^m}$
27.			$\frac{k(k-1)}{2!}a^{k-2}$	$\frac{z^{-2}}{(1-az^{-1})^3}$
28.	<u>k(k</u>	$\frac{-1)\cdots(k-m}{(m-1)!}$	$\frac{a+2)}{a^{k-m+1}}$	$\frac{z^{-m+1}}{(1-az^{-1})^m}$