CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) **SEMESTER II SESSION 2020/2021**

COURSE NAME

: CALCULUS

COURSE CODE

BFC15003

PROGRAMME CODE :

BFF

EXAMINATION DATE : JULY 2021

DURATION

3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

CONFIDENTIAL

BFC15003

Q1 (a) Find $\frac{d}{dx} [(1 + x^5 \cot x)^{-8}]$ (4 marks)

- (b) Use implicit differentiation to find $\frac{d^2y}{dx^2}$ if $4x^2 2y^2 = 9$ (4 marks)
- (c) Find the slope of the tangent line to the unit circle of $x = \cos t$, $y = \sin t$, $(0 \le t \le 2\pi)$ at the point where $t = \pi/6$ at Figure Q1(c).
- (d) Figure Q1(d) shows the increment Δy and the differential dy. The Δy represents the change in y that occurs when it starts at x and travel along the curve y = f(x) until it moved $\Delta x (= dx)$ units in the x-direction, while dy represents the change in y that occurs if it starts at x and travel along the tangent line until it moved $dx (= \Delta x)$ units in the x-direction. Let $y = \sqrt{x}$
 - (i) Find formulas for Δy and dy
 - (ii) Evaluate Δy and dy at x = 4 with $dx = \Delta x = 3$. Then make a sketch of $y = \sqrt{x}$ showing the values of Δy and dy.

(8 marks)

- Q2 (a) A garden is to be laid out in a rectangular area and protected by a chicken wire fence. What is the largest possible area of the garden if only 100 running meter of chicken wire is available for the fence?

 (5 marks)
 - (b) Find the stationary points of the curve $y = 10x + x\sqrt{100 x^2}$ for $0 < x \le 10$. Hence determine whether the turning point is a maximum point or a minimum point. (10marks)
 - (c) Find a point on the curve $y = x^2$ that is closet to the point (18, 0) by referring to **Figure 2(c)**. (5 marks)
- Q3 (a) Evaluate $\int_2^5 (2x-5)(x-3)^9 dx$ using suitable integration method. (5 marks)
 - (b) Evaluate $\int_0^{\pi/6} \sin^2 x \cos^3 x \, dx$ by using integration by parts method (5 marks)
 - (c) Evaluate $\int \frac{3x^4 + 4x^3 + 16x^2 + 20x + 9}{(x+2)(x^2+3)^2} dx$ (10 marks)

CONFIDENTIAL

CONFIDENTIAL

BFC15003

Q4 (a) As illustrated in **Figure 4(a)**, derive the formula for the volume of a pyramid whose altitude is h and whose base is a square with sides of length a.

(5 marks)

(b) Find the area of the surface that is generated by revolving the portion of the curve $y = x^3$ between x = 0 and x = 1. Sketch the curve and imagine revolving it about the x-axis.

(7 marks)

(c) Find the arc length of the curve $y = x^{3/2}$ from (1,1) to (2, $2\sqrt{2}$) Figure 4(c) in two ways.

(8 marks)

Q5 (a) Solve the differential equation $\frac{dy}{dx} = -4xy^2$

(5 marks)

- (b) Solve the initial-value problem $(4y cosy) \frac{dy}{dx} 3x^2 = 0$, y(0) = 0 (5 marks)
- (c) At time t = 0, a tank contains 4kg of salt dissolved in 100 l of water. Suppose that brine containing 2 kg of salt per litre of brine is allowed to enter the tank at a rate of 5l/min and that the mixed solution is drained fro the tank at the same rate. Find the amount of salt in the tank after 10 minutes.

(10 marks)

- END OF QUESTIONS -

CONFIDENTIAL

SEMESTER/SESSION : SEM II / 2020/2021

PROGRAMME CODE : BFF

COURSE NAME : CALCULUS

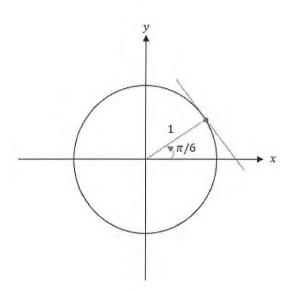


Figure Q1(c)

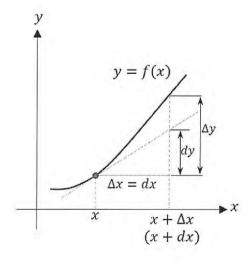


Figure Q1(d)

SEMESTER/SESSION

: SEM II / 2020/2021

PROGRAMME CODE : BFF

COURSE NAME

: CALCULUS

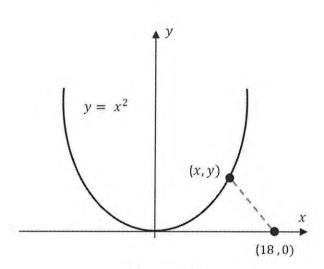


Figure 2(c)

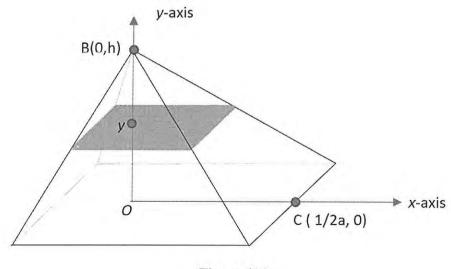


Figure 4(a)

SEMESTER/SESSION : SEM II / 2020/2021

COURSE NAME : CALCULUS

PROGRAMME CODE : BFF

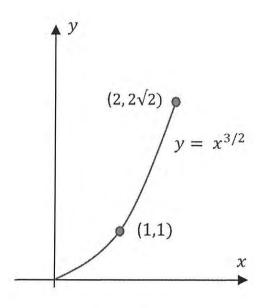


Figure 4(c)

SEMESTER/SESSION : SEM II / 2020/2021

PROGRAMME CODE : BFF

COURSE NAME

: CALCULUS

Differentiation Rules	rmulae Indefinite Integrals
$\frac{d}{dx}[k] = 0$	$\int k dx = kx + C$
$\frac{d}{dx}\left[x^{n}\right] = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$ $\int \frac{dx}{x} = \ln x + C$
$\frac{d}{dx} \Big[\ln x \Big] = \frac{1}{x}$	$\int \frac{dx}{x} = \ln x + C$
$\frac{d}{dx}[\cos x] = -\sin x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}[\cot x] = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
$\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
$\frac{d}{dx}[\csc x] = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
$\frac{d}{dx}\left[e^x\right] = e^x$	$\int e^x dx = e^x + C$
$\frac{d}{dx}[\cosh x] = \sinh x$	$\int \sinh x dx = \cosh x + C$
$\frac{d}{dx}[\sinh x] = \cosh x$	$\int \cosh x dx = \sinh x + C$
$\frac{d}{dx}[\tanh x] = \operatorname{sech}^2 x$	$\int \operatorname{sech}^2 x dx = \tanh x + C$
$\frac{d}{dx}[\coth x] = -\operatorname{cosech}^2 x$	$\int \operatorname{cosech}^2 x \ dx = -\coth x + C$
$\frac{d}{dx}[\operatorname{sech} x] = -\operatorname{sech} x \tanh x$	$\int \operatorname{sech} x \tanh x dx = -\operatorname{sech} x + C$
$\frac{d}{dx}\left[\operatorname{cosech} x\right] = -\operatorname{cosech} x \operatorname{coth} x$	$\int \operatorname{cosech} x \operatorname{coth} x dx = -\operatorname{cosech} x + C$