

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (TAKE HOME ASSESSMENT) SEMESTER II **SESSION 2020/2021**

COURSE NAME

: MULTIVARIABLE

CALCULUS/ENGINEERING

MATHEMATICS III

COURSE CODE

: BEE 20303/BEE 21503

PROGRAMME CODE : BEV / BEJ

EXAMINATION DATE : JULY 2021

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

OPEN BOOK EXAMINATION

TERBUKA

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

Q1 (a) Compute the multiple integrals of

(i)
$$\int_0^1 \int_0^{\sqrt{4-z^2}} \int_0^y xy \, dx dy dz$$

(5 marks)

(ii)
$$\iint_R (8 - x^2 - y^2) dA$$
, where $R = \{(x, y) = -1 \le x \le 1 \text{ and } 0 \le y \le 2\}$

(5 marks)

(b) Evaluate the following triple integral by using spherical coordinates.

$$I = \int_{-4}^{4} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{32-x^2-y^2}} (3x^2 + 3y^2 + 3z^2) \, dz dy dx$$

(5 marks)

(c) (i) By using polar coordinate, evaluate $\iint_R x^2 + y^2 dA$, if R is the region in between circle $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ in the first octant.

(5 marks)

(ii) By using double integrals, find the area of the regions enclosed by $y = \sin x$, $y = \cos x$, $x = \frac{\pi}{4}$, $x = \frac{\pi}{2}$.

(5 marks)

Q2 (a) Find the first partial derivative of

(i)
$$f(x, y, z) = \frac{x^2y}{z^3}$$

(3 marks)

(ii)
$$f(x, y, z) = e^{yz} \cos xy$$

(3 marks)

(b) Solve $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ by applying chain rule if $z = \ln(x^2 - 2y)$, and x = u + v, $y = e^v$.

(6 marks)

(c) Show that the function $z = e^x \sin y + e^y \cos x$ satisfies Laplace equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$. (5 marks)

TERBUKA

CONFIDENTIAL

BEE 20303/BEE 21503

- (d) For the following equations, find $\frac{\partial z}{\partial x}$ if z = f(x, y) is implicitly defined as a function of x and y.
 - (i) $ye^{xz} 3ye^{yz} = -4ze^{xy} + 1$

(4 marks)

(ii) $2x^2z^4 - 5\ln(xyz^2) = 4z$

(4 marks)

Q3 (a) Calculate the divergence of curl of vector $\vec{F} = e^{2z+y} \hat{\imath} + \sin yz^2 \hat{\jmath} + \cos yzx \hat{k}$, $\nabla \cdot (\nabla \times \vec{F})$.

(5 marks)

(b) Find the work done by force field $\vec{F} = 3x^2 \hat{\imath} + y^2 \hat{\jmath}$ on a particle when it moves from (0, 0) to $(-\pi, 0)$ along the curves C1 and C2 in Figure Q3 (b) by solving $\int_r \vec{F} \cdot d\vec{r}$. Based on your calculation, judge whether the force, \vec{F} is conservative or non-conservative and give your explanation.

(10 marks)

(c) Evaluate $\iint_{\sigma} 2y^2 + 4z^2 ds$, where σ is the first octant portion of a cone $z = \sqrt{x^2 + y^2}$ with height of 9.

(10 marks)

Q4 (a) Define Gauss's theorem and Stokes' theorem.

(4 marks)

(b) Consider the outward flux of vector field,

$$\vec{F}(x,y,z) = y\hat{\imath} + xy\hat{\jmath} + z\hat{k}$$

across the surfaces enclosed by cylinder $x^2 + y^2 = 4$, z = 4 plane z = 0, and cone $z = \sqrt{x^2 + y^2}$.

(i) Sketch the graph of the surfaces.

(2 marks)

(ii) Find the divergence of $\vec{F}(x, y, z)$.

(2 marks)

(iii) Use Gauss's theorem to evaluate the flux of the vector field $\vec{F}(x, y, z)$ across the surfaces.

(7 marks)

CONFIDENTIAL

BEE 20303/BEE 21503

(c) A vector field oriented outward is given by

$$\vec{F}(x,y,z) = -\frac{3}{2}y^2\hat{\imath} - 2xy\hat{\jmath} + yz\hat{k}$$

Suppose that the surface of the plane x + y + z = 1 in the first octant contained within triangle C with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) transverse in anticlockwise direction.

(i) Sketch the surface of the plane.

(2 marks)

(ii) Evaluate $\oint_C \vec{F} \cdot \vec{dr}$ by C using Stoke's theorem.

(8 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2020/2021

COURSE NAME

: MULTIVARIABLE

CALCULUS/ ENGINEERING MATHEMATIC III PROGRAMME CODE: BEV/BEJ

COURSE CODE: BEE 20303/BEE 21503

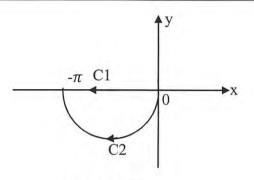


FIGURE Q3(b)