CONFIDENTIAL

18 B

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) **SEMESTER II SESSION 2020/2021**

COURSE NAME	:	ENGINEERING MATHEMATICS II
COURSE CODE	:	BDA 14103
PROGRAMME	:	BDD
EXAMINATION DATE	:	JULY 2021
DURATION	:	3 HOURS
INSTRUCTION	:	PART A: ANSWER ONE (1) QUESTION ONLY.
		PART B: ANSWER ALL QUESTIONS.

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

· 2.7

 $(X,f_{1})_{0}$

CONFIDENTIAL

PART A: ANSWER ONE (1) QUESTION ONLY.

Q1 A rod of length π is fully insulated along it sides. Assuming the initial temperature is defined by,

$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$$

and at t = 0, the ends are dipped into cold water and held at temperature of 0°C. The heat equation given as,

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

(a) Analyze the given partial differential equation by using the method of separation of variables and prove that the solution of the heat transfer problem above gives as,

$$u(x,t) = \sum_{n=1}^{\infty} A_n \sin nx \, e^{-n^2 t}$$

where A_n are an arbitrary constant.

(15 marks)

(b) Solve the particular solution for the general solution obtained from the Q1 (a).

(5 marks)

CONFIDENTIAL

TERBUKA

CONFIDENTIAL

Q2 A rod of length 2 *m* is fully insulated along its sides. The temperature at *x* is initially $100\sin\left(\frac{\pi x}{2}\right)^{\circ}$ C, and at t = 0, the ends are dipped into cold water and held at temperature of 0°C. If the heat equation given as

$$\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$$

(a) By using the method of separation of variables, discover the expression for the temperature at any point at a distance x from one end at any subsequent time t second after t = 0.

(15 marks)

(b) Solve the particular solution for the general solution obtained from the Q2 (a).

(5 marks)

PART B: ANSWER ALL QUESTIONS

Q3 A half-range expansions given as the following function:

$$f(x) = \frac{\pi}{2} - x \quad \text{for} \quad 0 < x < \pi$$

(a) Sketch a graph of f(x) in the interval $0 < x < \pi$.

(2 marks)

(b) Solve the given half-range expansion of the function as an *even function* and sketch the periodic extension for the series obtained for $-2\pi < x < 2\pi$.

(10 marks)

(c) Solve the given half-range expansion of the function as an *odd function* and sketch the periodic extension for the series obtained for $-2\pi < x < 2\pi$.

(8 marks)

CONFIDENTIAL

TERBUK

CONFIDENTIAL

Q4 Obtain the particular solution for:

 $2y'' + 2y = 2\sin x$ y(0) = 0, y'(0) = 1

(a) By using Laplace transform method.

(10 marks)

(b) By using method of variation parameter.

(10 marks)

Q5 (a) A population of a village grows proportion to its current population. The initial population is 10,000 and grows 9% per year. This can be modeled

$$\frac{dP}{dt} = 0.09 P$$

Determine

- (i) the equation to model the population.
- (ii) the population after 5 years.
- (iii) how long it will take the population to double.

(10 marks)

(b) A forced system is given by:

$$my'' + ny' + ky = 10\cos(2x)$$

Solve for the steady state solution in the case where m = 1, n = 3, and k = 2.

4

(10 marks)

CONFIDENTIAL

TERBUKA

CONFIDENTIAL

Q6 A periodic function f(x) is defined as the following function:

$$f(x) = \begin{cases} 0 & -\pi < x < -\frac{\pi}{2} \\ 1 & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < x < \pi \end{cases}$$

and

$$f(x) = f(x + 2\pi)$$

(a) Sketch a graph of this function over the interval $-3\pi < x < 3\pi$.

(3 marks)

(b) Solve the given the function and show that its Fourier series is given by,

$$f(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cos(2n-1)x}{2n-1}$$

(12 marks)

(c) Using the results obtained in Q3(b) and by setting an appropriate value of x, conclude that,

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots - \dots$$

(5 marks)

CONFIDENTIAL

TERBUKA

- END OF QUESTION -

CONFIDENTIAL

	FINAL EXAM	IINATION			
SEMESTER / SESSION COURSE	: SEM II /20202021 : ENGINEERING MATHE	EMATICS II	PROGRAMME COURSE CODE	: BDD : BDA14103	
First Order Differential	FORMU Equation	LAS			
Type of 0	Type of ODEs		General solution		
Linear ODEs: y' + P(x)y	=Q(x)	$y = e^{-\int P(x)dx} \left\{ \int e^{\int P(x)dx} Q(x)dx \right\}$		$(x)dx+C\bigg\}$	
Exact ODEs: f(x, y)dx + g((x,y)dy=0		$(x, y) = \int f(x, y) dy - \int \left\{ \frac{\partial F}{\partial y} - g(x, y) \right\}$		
Inexact ODEs: M(x, y)dx + N(x, y)dx $\frac{\partial M}{\partial y} \neq 0$ Integrating factor; $i(x) = e^{\int f(x)dx}$ where $f(x)$ $i(y) = e^{\int g(y)dy}$ where $g(y)$	$ \frac{\partial N}{\partial x} = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) $	M(x,y)dx -	$\int \left\{ \frac{\partial \left(\int iM(x,y)dx \right)}{\partial y} - i \right\}$	$iN(x,y)\bigg\}dy=C$	

Characteristic Equation and General Solution for Second Order Differential Equation

Types of Roots	General Solution
Real and Distinct Roots: m_1 and m_2	$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$
Real and Repeated Roots: $m_1 = m_2 = m$	$y = c_1 e^{mx} + c_2 x e^{mx}$
Complex Conjugate Roots: $m = \alpha \pm i\beta$	$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$

Method of Undetermined Coefficient

g(x)	<i>y</i> _p
Polynomial: $P_n(x) = a_n x^n + + a_1 x + a_0$	$x^{r}(A_{n}x^{n}++A_{1}x+A_{0})$
Exponential: e ^{ax}	$x^{r}(Ae^{ax})$
Sine or Cosine: $\cos \beta x$ or $\sin \beta x$	$x^r (A\cos\beta x + B\sin\beta x)$

Note: r is 0, 1, 2... in such a way that there is no terms in $y_p(x)$ has the similar term as in the $y_c(x)$.

6

CONFIDENTIAL

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION	: SEM II /20202021	PROGRAMME	: BDD	
COURSE	: ENGINEERING MATHEMATICS II	COURSE CODE	: BDA14103	

Method of Variation of Parameters

The particular solution for y''+by'+cy = g(x)(b and c constants) is given by $y(x) = u_1y_1 + u_2y_2$, where;

$$u_1 = -\int \frac{y_2 g(x)}{W} dx$$
 and $u_2 = \int \frac{y_1 g(x)}{W} dx$ $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1$

Laplace Transform

$\mathcal{L}\left\{f(t)\right\} = \int_{0}^{\infty} f(t) dt$	$f(t)e^{-st}dt = F(s)$
f(t)	F(s)
a	$\frac{a}{s}$
$t^n, n = 1, 2, 3, \dots$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
sin at	$\frac{a}{s^2+a^2}$
cos at	$\frac{s}{s^2+a^2}$
sinh at	$\frac{a}{s^2-a^2}$
cosh at	$\frac{\frac{a}{s^2 - a^2}}{\frac{s}{s^2 - a^2}}$ $F(s - a)$
$e^{at}f(t)$	F(s-a)
$t^n f(t), n = 1, 2, 3, \dots$	$(-1)^n \frac{d^n F(s)}{ds^n}$
H(t-a)	$\frac{e^{-as}}{s}$
f(t-a)H(t-a)	$e^{-as}F(s)$
$f(t)\delta(t-a)$	$e^{-as}f(a)$
y(t)	<i>Y</i> (<i>s</i>)
y'(t)	sY(s)-y(0)
y''(t)	$s^{2}Y(s) - sy(0) - y'(0)$

CONFIDENTIAL

CONFIDENTIAL

	FINAL EXAMINATION		
SEMESTER / SESSION COURSE	: SEM II /20202021 : ENGINEERING MATHEMATICS II	PROGRAMME COURSE CODE	: BDD : BDA14103
	n of periodic function with period 2	π	
$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$			
$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$			

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

Half Range Series $a_0 = \frac{2}{T} \int_{-\infty}^{L} f(x) dx$

$$\begin{aligned} &L_0^0\\ a_n &= \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx\\ &b_n &= \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx\\ &f(x) &= \frac{1}{2} a_0 + \sum_{n=1}^\infty a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^\infty b_n \sin \frac{n\pi x}{L} \end{aligned}$$

