

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2021/2022

COURSE NAME

SEDIMENT TRANSPORT

COURSE CODE

BFW 40603

PROGRAMME CODE

BFF

EXAMINATION DATE

JULY 2022

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS AN ONLINE ASSESSMENT AND CONDUCTED VIA CLOSED BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA

CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

SEMESTER/SESSION : SEM II / 2021/2022

PROGRAMME CODE: BFF

COURSE NAME

: SEDIMENT TRANSPORT

COURSE CODE : BFW40603

TABLE Q1(b): Sieve Analysis Result for Sungai Mersing

No.	Sieve Size (mm)	Weight of Sample (g)
1	5.00	0
2	2	2
3	1.18	18
4	0.6	355
5	0.425	563
6	0.3	428
7	0.212	108
8	0.15	46
9	0.063	11
10	pan	0

TABLE Q3(a): Channel Description

Water Discharge, Q (m ³ /s)	60
Channel Slope, S	0.001
Manning's Roughness Coefficient, n	0.015
Median Particle Size, D ₅₀ (mm)	40
Dantiala Chama	CIL 1 d B

Particle Shape

Slightly Rounded

TABLE Q3(b): Water and Sediment Characteristics of Sungai Muda, Kedah.

	0
Flow discharge, Q	$0.6 (\text{m}^3/\text{s})$
Average velocity, V	0.42 (m/s)
Flow area, A	$1.43 (\mathrm{m}^2)$
Hydraulic radius, R	0.24 (m)
Flow width, B	5.70 (m)
Slope, S	0.0010
Water temperature,	25 (°C)
Bed load, Q _b	$9.48 \times 10^{-6} (\text{m}^3/\text{s})$
Suspended load, Qs	$9.60 \times 10^{-6} (\text{m}^3/\text{s})$
Mean diameter, d ₅₀	1.1 (mm)
Sediment density, ρ _s	$2650 (kg/m^3)$
Sediment specific gravity, γ_s	2.650
$[(\gamma_s/\gamma) - 1]$	1.650
Gravity acceleration, g	$9.81 \text{ (m/s}^2)$
Kinematic viscosity, v	$1.0 \times 10-6 \text{ (m}^2/\text{s)}$
Shape factor, SF	0.7

SEMESTER/SESSION : SEM II / 2021/2022

COURSE NAME

: SEDIMENT TRANSPORT

PROGRAMME CODE: BFF

COURSE CODE : BFW40603

FIGURE Q2(b)(i): Downstream Slope of the Embankment

FIGURE Q3(a): The Channel Measurement

SEMESTER/SESSION : SEM II / 2021/2022

PROGRAMME CODE: BFF

COURSE NAME

: SEDIMENT TRANSPORT

COURSE CODE

: BFW40603

Figure Q3(b)(ii): Fall Velocity Determination for Yang's Procedure

SEMESTER/SESSION : SEM II / 2021/2022

PROGRAMME CODE: BFF

COURSE NAME

: SEDIMENT TRANSPORT

COURSE CODE : BFW40603

The following information may be useful. The symbols have their usual meaning.

So =

Lacey equation

 $V = 10.8 R^{2/3} So^{1/3}$

For wide channel

$$V = 10.8 \text{ yo}^{2/3} \text{ So}^{1/3}$$

q = V yo

Normal Depth

q = Vh, where $V = \frac{1}{n}R_h^{2/3}S^{1/2}$, $R_h = h$ (Wide channel)

$$q = \frac{1}{n} h^{5/3} S^{1/2}$$

Bed shear stress

For normal flow;

 $\tau = \rho g R_h S$, where; $R_h = h$ (wide channel)

For bed material

$$d^* = d \left[\frac{(s-1)g}{v^2} \right]^{1/3}$$

$$\tau_{\text{crit}}^* = \frac{0.30}{1 + 1.2d^*} + 0.055 \ [1 - \exp(-0.020d^*)]$$

$$\tau^* = \frac{\tau}{(\rho_s - \rho)gd}$$

Einstein Method

$$V = 5.75 U'_* log \left(12.27 \frac{R'}{k_s} x\right); k_s = d_{65}; U'_* = (gR'S)^{1/2}$$

$$\delta = \frac{11.6v}{U'_*}; \frac{k_s}{\delta} = \frac{0.0009(R')^{1/2}}{1.31 \times 10^{-4}}$$

$$U_*'' = \left(\frac{V}{U_*''}\right)^{-1} V$$

$$R'' = \frac{(U_*'')^2}{gS} = \frac{(\dot{U}_*'')^2}{0.0078}$$

$$\psi' = (2.65-1) \frac{d_{35}}{SR}$$

SEMESTER/SESSION : SEM II / 2021/2022

PROGRAMME CODE: BFF

COURSE NAME

: SEDIMENT TRANSPORT

COURSE CODE : BFW40603

The following information may be useful. The symbols have their usual meaning.

Yang's Equation

$$\begin{split} \log \mathrm{C_T} &= 5.435 - 0.286 \log \frac{W_{\mathrm{S}} \, \mathrm{d_{50}}}{\mathrm{v}} - 0.457 \log \frac{\mathrm{U_*}}{W_{\mathrm{S}}} \\ &+ \left(1.799 - 0.409 \log \frac{W_{\mathrm{S}} \, \mathrm{d_{50}}}{\mathrm{v}} - 0.314 \log \frac{\mathrm{U_*}}{W_{\mathrm{S}}} \right) \log \left(\frac{\mathrm{VS}}{W_{\mathrm{S}}} - \frac{\mathrm{V_c S_o}}{W_{\mathrm{S}}} \right) \end{split}$$

$$\frac{V_c}{W_s} = \frac{2.5}{\log\left(\frac{U_* d_{50}}{v}\right) - 0.06} + 0.66 \qquad \text{for} \qquad 1.2 < \frac{U_* d_{50}}{v} < 70$$

$$\frac{V_c}{\mathit{W_S}} = 2.05 \qquad \text{for} \qquad 70 \leq \frac{U_* d_{50}}{\nu}$$

$$C_v(ppm) = \frac{C_T(ppm)}{\gamma_s}$$

SEMESTER/SESSION

: SEM II / 2021/2022

PROGRAMME CODE: BFF

COURSE NAME

: SEDIMENT TRANSPORT

COURSE CODE

: BFW40603

The following information may be useful. The symbols have their usual meaning.

Correction Factor in the Logarithmic Velocity Distribution

Friction Loss due to Channel Irregularities as a Function of Sediment Transport Rate (Einstein and Barbarossa, 1952)

SEMESTER/SESSION : SEM II / 2021/2022

PROGRAMME CODE: BFF

COURSE NAME : SEDIMENT TRANSPORT

COURSE CODE : BFW40603

The following information may be useful. The symbols have their usual meaning.

Degree of sinuousness	Correction factor
Straight channels	
Slightly sinuous channels	0.90
Moderately sinuous channels	0.75
Very sinuous channels	0.60

Correction Factor for Maximum Tractive Force

