

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2021/ 2022

COURSE NAME

: DATA MINING

COURSE CODE

BIT 33603

PROGRAMME CODE

BIT

EXAMINATION DATE :

JULY 2022

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS.

2. THIS FINAL EXAMINATION IS AN **ONLINE ASSESSMENT** CONDUCTED VIA **CLOSED**

BOOK.

3. STUDENTS ARE **PROHIBITED**TO CONSULT THEIR OWN
MATERIALS OR ANY
EXTERNAL RESOURCES
DURING THE EXAMINATION
CONDUCTED VIA CLOSED

BOOK.

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

BIT 33603

Q1	(a)	Differentiate between supervised and unsupervised learning?		
			(6	marks)

- (b) State **TWO** (2) examples of technique in each of the mentioned learning. (4 marks)
- Q2 (a) Define the term k-means clustering. (4 marks)
 - (b) Describe the algorithm to develop clusters. (6 marks)
 - (c) Suppose that 5 objects and each object has location in x and y-axis as shown in Table 1. Group these objects into K=2 clusters based on their location.

Table 1: Location of the objects

	x-axis	y-axis
Object 1	1	1
Object 2	2	1
Object 3	4	3
Object 4	5	4
Object 5	3	6

(10 marks)

Q3 (a) Define artificial neural network.

(2 marks)

(b) Discuss over-fitting and outlier.

(4 marks)

- (c) The 3-input neural network with the set of weights as $w_0 = 0.3$, $w_1 = -2.0$, $w_2 = 1.5$, and suppose that the input pattern is $x_0 = 1$, $x_1 = 1$, $x_2 = -1$, and the desired output is 1.
 - (i) Draw the structure diagram of neural network.

(5 marks)

(ii) Calculate the actual output.

(5 marks)

(iii) Assuming that the weights are updated after each pattern and the value of η is 0.33, Calculate the updated weights?

(8 marks)

(iv) Calculate new actual output.

(2 marks)

Q4 (a) Describe Association Rule.

(8 marks)

(b) Answer Q4(b)(i) and Q4(b) (ii) based on Table 2.

Table 2: Transaction on items {A,B,C,D,E}

Tid	Items
1	{A,B}
2	{A,B,C}
3	{B,C,D}
4	{B,C}
5	{A,B,C,D}
6	{B,D}
7	{B,E}
8	{B,D,E}

(i) Apply the Apriori Algorithm to compare the frequent item sets and with minimum support as 3.

(6 marks)

(ii) Write the algorithm to give all generators of closed frequent item sets and their closure.

(6 marks)

Q5 (a) Discuss information measure relate to decision tree structure.

(4 marks)

(b) Based on Figure Q5(b), answer Q5(b)(i) - Q5(b)(iii).

A study on customer expenses is conducted and a dataset is given in Table 1. The study shows either customer will buy a house or not. The decision or the dependent variable is identified in the last column. Summary of all the entropy calculation are tabulated in Table 3,4,5 and 6.

Figure Q5(b)

THE REST CO.

Table 3: Customer dataset

ID	Age	Income	Government	Credit	Buy
			Employee	Rating	House
1	<=30	high	No	Fair	No
2	<=30	High	No	Good	No
3	3140	High	No	fair	Yes
4	>40	Medium	No	fair	Yes
5	>40	Low	Yes	Fair	Yes
6	>40	Low	Yes	good	No
7	3140	Low	Yes	good	Yes
8	<=30	Medium	No	fair	No
9	<=30	Low	Yes	fair	Yes
10	>40	Medium	Yes	fair	Yes
11	<=30	Medium	Yes	good .	Yes
12	3140	Medium	No	good	Yes
13	3140	High	Yes	fair	Yes
14	>40	Medium	No	good	no

Table 4: Entropy measure for root node

Attribute	Average
	Entropy
Age	0.6935
Income	0.9110
Government Employee	0.7885
Credit rating	0.8922

Table 5: Entropy measure for the branch node ((<=30)

Attribute	Average
	Entropy
Income	0.4000
Government Employee	0.0000
Credit rating	0.9510

Table 6: Entropy measure for the branch node (>40)

Attribute	Average
	Entropy
Income	0.951
Government Employee	0.951
Credit rating	0.000

(i) Construct a decision tree using the entropy measure.

(8 marks)

(ii) Convert the decision tree in Q5(b)(i) to a production rules.

(8 marks)

(iii) Determine the result of an old government employee with fair credit rating?

(4 marks)

- END OF QUESTIONS -

TERBUKA

CONFIDENTIAL