

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2021/2022**

:

:

COURSE NAME

ENGINEERING TECHNOLOGY

MATHEMATICS II

COURSE CODE

BDU 11003

PROGRAMME CODE

BDC/BDM

EXAMINATION DATE

JULY 2022

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS IN

PART A AND THREE **QUESTIONS IN PART B.**

2. THIS FINAL EXAMINATION IS A

CONDUCTED CLOSE BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE **EXAMINATION** CONDUCTED VIA CLOSED BOOK.

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

(3)

PART A

Q1 A periodic function f(x) is defined by

$$f(x) = \begin{cases} 0, & -\pi \le x < -0.5\pi \\ 1, & -0.5\pi < x < 0.5\pi \\ 0, & 0.5\pi < x \le \pi \end{cases}$$

and $f(x) = f(x + 2\pi)$.

(a) Sketch the graph of f(x) over $-3\pi < x < 3\pi$.

(2 marks)

(b) Find the Fourier coefficients corresponding to f(x).

(13 marks)

(c) From (b), prove that the Fourier series for f(x)

$$f(x) = \frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cos(2n-1) x}{2n-1}.$$

(5 marks)

Q2 (a) The upward velocity of a rocket, measured at 3 different times, is shown in the **Table Q2(a)**. The velocity over the time interval $5 \le t \le 12$ is approximated by a quadratic expression as;

$$v(t) = a_1 t^2 + a_2 t + a_3.$$

Determine the values of a_1 , a_2 and a_3 by using Gauss – Elimination method.

(10 marks)

(b) Solve the system of linear equations by using Thomas algorithm method.

$$\begin{pmatrix} 0 & 0 & 3 & 4 \\ 2 & 9 & 1 & 0 \\ 0 & 1 & 9 & 4 \\ 2 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 8 \\ 6 \\ 8 \\ 9 \end{pmatrix}$$

(10 marks)

PART B

Q3 (a) By using an appropriate method, solve

$$y'' - 2y' - 3y = 4e^{3x} + 9x$$

with $y(0) = 2$ and $y'(0) = -2$.

(13 marks)

(b) A mass of 20.4 kg is suspended from a spring with a known spring constant of 29.4 N/m. The mass is set in motion from its equilibrium position with an upward velocity of 3.6m/s. The motion can be described in the differential equation

$$\ddot{x} + \frac{k}{m}x = 0$$

where m is the mass of the object and k is the spring constant.

- (i) Identify the initial conditions.
- (ii) Find an equation for the position of the mass at any time t.

(7 marks)

- Q4 (a) Determine the Laplace transform for each of the following function:
 - (i) $(2+t^3)e^{-2t}$.
 - (ii) $\sin(t-2\pi)H(t-2\pi).$
 - (iii) $\sin 3t \ \delta(t-\pi)$.

(10 marks)

(b) Consider the periodic function

$$f(t) = \begin{cases} t, & 0 \le t < 1 \\ 1 - t, & 1 \le t < 2 \end{cases}$$
$$f(t) = f(t+2).$$

Sketch the graph of f(t) and find its Laplace transform.

[Hint:
$$\mathcal{L}[f(t)] = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt, \ s > 0.$$
]

(10 marks)

Q5 (a) (i) Find the inverse Laplace transform of

$$\frac{s+3}{s^2-6s+13}$$

(ii) From Q5(a)(i), find

$$\mathcal{L}^{-1} \left\{ \frac{(s+3)e^{-\frac{1}{2}\pi s}}{s^2 - 6s + 13} \right\}$$

(8 marks)

(b) (i) Express

$$\frac{1}{(s-1)(s-2)^2}$$

in partial fractions and show that
$$\mathcal{L}^{-1}\left\{\frac{1}{(s-1)(s-2)^2}\right\} = e^t - e^{2t} + te^{2t}.$$

Use the result in Q5(b)(i) to solve the differential equation $y' - y = te^{2t}$ (ii) which satisfies the initial condition of y(0) = 1.

(12 marks)

Show that $\frac{dy}{dx} = \frac{y}{y-x}$ is a homogeneous differential equation. **Q6** (a) (i)

(ii) Hence, solve the differential equation in part Q6(a)(i).

(12 marks)

(b) Choose an appropriate method to solve the following problem and obtain its particular solution

$$\frac{dy}{dx} - y \tan x = \sec x, \ y(0) = 1.$$

(8 marks)

-END OF QUESTIONS-

4

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2021/2022

COURSE NAME

: ENGINEERING TECHNOLOGY

MATHEMATICS II

PROGRAMME CODE: BDC/BDM

COURSE CODE: BDU 11003

Table Q2(a): Upward velocity of a rocket

Time, t	Velocity, v (meters/second)	
(seconds)		
5	106.8	
8	177.2	
12	279.2	

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2021/2022

COURSE NAME

: ENGINEERING TECHNOLOGY

MATHEMATICS II

PROGRAMME CODE: BDC/BDM COURSE CODE: BDU 11003

<u>Formula's</u> Characteristic Equation and General Solution

Case	Roots of the Characteristic Equation	General Solution
1	m_1 and m_2 ; real and distinct	$y = Ae^{m_1x} + Be^{m_2x}$
2	$m_1 = m_2 = m$; real and equal	$y = (A + Bx)e^{mx}$
3	$m = \alpha \pm i\beta$; imaginary	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$

Particular Integral of ay'' + by' + cy = f(x): Method of Undetermined Coefficients

f(x)	$y_p(x)$	
$P_n(x) - A_n x^n + \dots + A_1 x + A_0$	$x^r(B_nx^n+\cdots+B_1x+B_0)$	
Ce ^{ax}	$x^r(Pe^{\alpha x})$	
$C\cos\beta x$ or $C\sin\beta x$	$x'(p\cos\beta x + q\sin\beta x)$	

Particular Integral of ay'' + by' + cy = f(x): Method of Variation of Parameters

Wronskian	Parameter	Solution
$W = \begin{vmatrix} y_1 & y_2 \\ y_1 & y_2 \end{vmatrix}$	$u_1 = -\int \frac{y_2 f(x)}{W} dx, u_2 = \int \frac{y_1 f(x)}{W} dx$	$y_p = u_1 y_1 + u_2 y_2$

6

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2021/2022

COURSE NAME

: ENGINEERING TECHNOLOGY

MATHEMATICS II

PROGRAMME CODE: BDC/BDM COURSE CODE: BDU 11003

Laplace Transforms

Laplace Transforms							
$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$							
f(t)	F(s)	f(t)	F(s)				
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$				
t^n , $n=1, 2, 3,$	$\frac{n!}{s^{n+1}}$	f(t-a)H(t-a)	$e^{-as}F(s)$				
e ^{at}	$\frac{1}{s-a}$	$\delta(t-a)$	e^{-as}				
sin <i>at</i>	$\frac{a}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$				
cos at	$\frac{s}{s^2 + a^2}$	$\int_0^t f(u)g(t-u)du$	F(s).G(s)				
sinh <i>at</i>	$\frac{a}{s^2 - a^2}$	<i>y</i> (<i>t</i>)	Y(s)				
cosh <i>at</i>	$\frac{s}{s^2 - a^2}$	$\dot{y}(t)$	sY(s)-y(0)				
$e^{at}f(t)$	F(s-a)	$\ddot{y}(t)$	$s^2Y(s)-sy(0)-\dot{y}(0)$				
$t^n f(t), n=1, 2, 3,$	$(-1)^n \frac{d^n F(s)}{ds^n}$						

Periodic Function for Laplace transform : $\mathcal{L}\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$, s > 0.

Fourier Series

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right] \quad \text{where} \quad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$