

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2021/2022

COURSE NAME

: ENGINEERING

TECHNOLOGY MATHEMATICS II

COURSE CODE

BDX 10502

PROGRAMME CODE :

BDX

EXAMINATION DATE

JULY 2022

DURATION

2 HOURS

INSTRUCTION

1. ANSWER FOUR (4) FROM FIVE (5)

QUESTIONS ONLY

2. THIS FINAL EXAMINATION IS

CONDUCTED VIA CLOSED BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA

CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

Q1 (a) Solve the system of linear equation below by Gauss-Seidel iteration method.

$$x_1 + 5x_2 = 9$$

$$2x_2 + 9x_3 = 6$$

$$8x_1 + 2x_2 + 2x_3 = 9$$

(15 Marks)

(b) Examine the least positive root of the function $f(x) = 3x^3 - 3x^2 - 3x + 1$ as shown in **Figure Q1(b)** by using Newton-Raphson method. Iterate until $|f(x_i)| < \varepsilon = 0.0004$.

(10 marks)

Q2 (a) Given a set of data as in Table Q2(a)

	Table Q2(a))	
X	1.0	1.3	1.6
f(x)	0.765	0.620	0.455

(i) Approximate f(1.4) using Lagrange interpolating polynomial.

(5 marks)

(ii) If is added in the data in **Table Q2(a)**, estimate f(1.4) using Newton divided-difference interpolating polynomial.

(10 marks)

(b) Given the matrix

$$A = \begin{bmatrix} 0 & -2 & 2 \\ -2 & 2 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$

Use the inverse power method to find the smallest eigenvalue and its corresponding eigenvector of the matrix A using $V^{(0)} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$. Iterate until $|m_{k+1} - m_k| < 0.0005$.

(10 marks)

CONFIDENTIAL

BDX 10502

Q3 (a) A periodic function f(x) is defined by

 $f(x) = x, \qquad -1 < x < 1$

and

$$f(x) = f(x+2)$$

i) Sketch the graph of the function over -3 < x < 3

(6 marks)

ii) Evaluate the Fourier coefficients corresponding to the function.

(10 Marks)

iii) Solve the corresponding Fourier series.

(9 Marks)

Q4 (a) The radial temperature distribution in a cylinder is governed by

$$\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr}$$

If inner radius is 5 units and outer radius is 10 units. The inner and outer surfaces are maintained at 120°C and 60°C respectively. Use the finite element method with 2 equal element to find its stiffness matrix.

(10 Marks)

(b) Given

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

Evaluate the largest eigenvalue and its corresponding eigenvector using Power Method. Use $V^{(0)} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T$ and iterate until $|m_{k+1} - m_k| < 0.005$. Do your computation in 4 decimal places.

(15 marks)

Q5 (a) Determine the general solution of the following equation

$$\frac{dy}{dx} = sec^2y$$

(5 marks)

CONFIDENTIAL

BDX 10502

(b) Use the method of separation of variables to solve the following initial-boundary value problem :

Partial Differential Equation =>
$$\frac{\partial u}{\partial t} = 3 \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < \pi$, $t > 0$,
Boundary conditions => $u(0, t) = 0$, $u(\pi, t) = 0$,
Initial conditions => $u(x, 0) = x(\pi - x)$

(20 Marks)

-END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2021/2022 COURSE NAME: ENGINEERING TECHNOLOGY

MATHEMATICS II

PROGRAMME CODE: BDX

COURSE CODE : BDX 10502

FIGURE

Figure Q1(b)