

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2021/2022**

COURSE NAME

: THERMODYNAMICS

COURSE CODE

: BWC 20303

PROGRAMME CODE : BWC

EXAMINATION DATE : JANUARY/FEBRUARY 2022

DURATION

: 3 HOURS

INSTRUCTION

: 1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS AN ONLINE ASSESSMENT AND CONDUCTED VIA OPENED

BOOK

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

TERBUKA

CONFIDENTIAL

Q1 (a) A gas undergoes a cycle in a piston-cylinder assembly consisting of the following two Processes, A and B, between the same end states, 1 and 2, where;

$$P_1 = 1 \times 10^5 \text{ N/m}^2$$
, $V_1 = 1 \text{ m}^3$, $U_1 = 300 \text{ kJ}$, $P_2 = 10 \times 10^5 \text{ N/m}^2$, $V_2 = 0.1 \text{ m}^3$, $U_2 = 400 \text{ kJ}$.

Process A: from state 1 to a pressure of $10 \times 10^5 \text{ N/m}^2$ with constant-volume process, then followed by process to state 2 with constant-pressure.

Process B: process from state 1 to state 2 with pressure-volume relationship is PV = constant

Kinetic and potential effects are not significant. For each process, A and B:

(i) sketch the process on P - V coordinates.

(4 marks)

(ii) calculate work (kJ).

(6 marks)

(iii) calculate heat transfer (kJ).

(4 marks)

(b) A piston cylinder assembly contains a gas; undergoes three processes in series:

Process A - B; constant volume: State A from $P_A = 1 \times 10^4$ kg/m², $V_A = 4$ m³ to state B; $P_B = 2 \times 10^4$ kg/m²

Process B - C; pressure-volume relationship is $p\forall$ = constant: compression to $V_C = 2$ m³.

Process C - D: constant pressure to state D where $V = 1 \text{m}^3$.

(i) Sketch the processes on P - V coordinates.

(5 marks)

(ii) Evaluate the work of each process in kJ.

(6 marks)

- Q2 (a) There is one-inlet, and one-exit that the air enters; with control volume at 3×10^5 N/m², temperature at 227 °C, and with velocity 15 m/s through a flow area of 14 cm². At the exit; the pressure, temperature and velocity are 1.5×10^5 N/m², 183.5 °C, and 150 m/s, respectively. By assuming this is steady-state operation, determine:
 - (i) the mass flow rate, in kg/s.

(6 marks)

CONFIDENTIAL

Q3

BWC 20303

	(ii)	the exit flow area, in cm ² .	(4 marks
(b)	Liquid water flows isothermally at 20 °C through a one-inlet, one-exit duct operating at steady state. The duct's inlet and exit diameters are 0.2 m and 0.01 m, respectively At the inlet, the velocity is 40 m/s and the pressure is 1 x 10^5 N/m ² . At the exit determine:		
	(i)	velocity, in m/s.	(6 marks
	(ii)	the mass flow rate, in kg/s.	(4 marks)
(c)	vapor	sed rigid tank; $V=2 \text{ m}^3$ contains Refrigerant 134a, initially a two pl mixture at 10 °C. The refrigerant is heated to a final state where is y is 100%. Determine the mass of vapor present at initial states.	
(a)	world	cribe ONE (1) example of practical thermodynamic application in the modern d we live in today. Include the thermodynamic processes that are involved in the ication. (8 marks	
(b)	(i)	Define reversible and irreversible thermodynamic processes.	(2 marks)
	(ii)	Give an example for each reversible and irreversible process.	(2 marks)
(c)	A Carnot engine operates between reservoirs at 450 °C and 25 °C .		
	(i)	Determine the efficiency of the engine.	(3 marks)
	(ii)	If the engine does 5.0 J of work per cycle, calculate the heat per cycle it from the high-temperature reservoir.	
		nom the high-temperature reservoir.	(3 marks)
	(c)	Calculate the heat per cycle it exhaust to the cold-temperature rese	rvoir.

(d)

Sketch a Carnot cycle on a temperature-volume diagram for the system.

(4 marks)

CONFIDENTIAL

BWC 20303

Q4 (a) Explain the working principle of a domestic refrigerator.

(8 marks)

- (b) Name the thermodynamic process and list out the parameters that is changing and constant involved in the following event:
 - (i) boiling water in an open container.
 - (ii) cooking in a pressure cooker.
 - (iii) freezing water into ice.

(9 marks)

- (c) Thermodynamic cycle refers to any closed system that undergoes various changes due to temperature, pressure, and volume, however, its final and initial state are equal.
 - (i) Describe **TWO** (2) types of thermodynamic cycle.

(6 marks)

(ii) Name an example of application for each of the cycle mentioned in Q4 (c) (i). (2 marks)

- END OF QUESTIONS -

