

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2021/2022

COURSE NAME

: APPLIED REGRESSION ANALYSIS

COURSE CODE

: BWB 20803

PROGRAMME CODE :

BWQ

EXAMINATION DATE

JANUARY / FEBRUARY 2022

DURATION

2 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS.

2. THIS FINAL EXAMINATION IS

AN **ONLINE** ASSESSMENT AND CONDUCTED VIA **OPEN**

BOOK.

THIS QUESTION PAPER CONSISTS OF TWELVE (12) PAGES

(12) PAGES RBUKA

CONFIDENTIAL

Q1 The manager of a company wishes to determine the important factors in predicting current salary of the company's employees. A statistical analysis was carried out on information obtained from 474 employees. The variables of interest are listed below.

Y = current salary (RM'000)

 X_1 = beginning salary (RM'000)

 X_2 = previous work experience (in months)

(a) Write down the general linear equation for the above problem.

(1 mark)

(b) A new variable will be included into the existing estimated regression model.

$$Employment \ category = \begin{cases} Manager \\ Supervisor \\ Technician \\ Clerk \end{cases}$$

(i) Write down the new general linear equation when new variable added into the model.

(1 mark)

(ii) Determine the response function for each type of employment category.

(4 marks)

(iii) Specify the alternative statement of H_0 and H_a for the appropriate test with X_1 and X_2 fixed, does working as a manager increase the expected salary as compared with working as a supervisor?

(2 marks)

(iv) Specify the alternative statement of H_0 and H_a for the appropriate test with X_1 and X_2 fixed, does the expected salary of working as a technician greater than working as a clerk?

(2 marks)

- Institut Penyelidikan Keselamatan Jalan Raya Malaysia (MIROS) is concerned about the increasing number of accidents along the MEX Highway. The number of accidents (Y) seems to be related to the number of vehicles that travel over it (X_1) and the speed (X_2) in miles per hour which they are travelling. Data regarding these variables were collected with the intention of examining it statistically so that the policy makers can introduced the new speed laws on reducing the number of accidents. The first order model with an interaction between both predictor variables was adopted in the study. The Minitab output obtained is presented in **Appendix 1**.
 - (a) Write down the estimated model.

(b) Interpret the intercept value in the model. Is it possible to interpret the intercept? Give the reasons of your answer.

(5 marks)

(c) Test the appropriateness of the model. Use the 5% significance level.

(5 marks)

(d) After completing the analysis, the research assistant decides to modify the model as

$$Y = \beta_{\theta} + \beta_{1} X_{1} + \beta_{2} X_{2} + \beta_{3} X_{1}^{2} + \beta_{4} X_{2}^{2} + \beta_{5} X_{1} X_{2} + \varepsilon.$$

The sum of squares error obtained from the analysis was 1327.545. Show if the quadratic terms are significant in explaining the number of accidents? Provide evidence to support the finding. Use the 5% significance level.

(7 marks)

- Q3 The Minitab output in **Appendix 2** shows the multiple regression analysis on the sales of cosmetics. The variables involved in the study are X_1 denotes expenditures for point-of-sale displays in beauty salons and department stores (in thousand dollars), X_2 and X_3 represent the corresponding expenditures for local media advertising and prorated share of national media advertising, respectively Meanwhile the response variable Y is sales (in thousand cases).
 - (a) Determine the best model by applying all possible regression method. You can choose any criterion.

(7 marks)

(b) Use the stepwise regression method to find the best subset of predictor variables for the response variable. Use α -to-enter = 0.10 and α -to-remove = 0.15.

(6 marks)

(c) Write the equation of the best model to predict Y obtained in the stepwise regression method. Is it the same as your proposed model in Q3(a)? Elaborate your answer.

(4 marks)

Q4 In a small-scale regression study, the data in **Table Q4** were obtained.

11.000				
1.00	0	h	10	04
2.0	- 71	.,		1 14

Observation	Y	X_1	X_2	X_3
1	49	45	36	45
2	55	30	28	40
3	85	11	16	42
4	32	30	46	40
4 5	26	39	76	43
6	28	42	78	27
7	95	17	24	36
8	26	63	80	42
9	74	25	12	52
10	37	32	27	35
11	31	37	37	55
12	49	29	34	47
13	38	26	32	28
14	41	38	45	30
15	12	38	99	26
16	44	25	38	47
17	29	27	51	44
18	40	37	32	54
19	31	34	40	36

(a) Identify and show any outlying points with respect to *X* or *Y* direction. Explain your findings.

(7 marks)

(b) Compute DFFITS and Cook's distance values to assess their influences for all cases in Q4(a). Conclude your findings.

(8 marks)

- END OF QUESTIONS -

SEMESTER / SESSION : SEM I / 2021/2022

PROGRAMME CODE : BWQ

COURSE NAME : APPLIED REGRESSION ANALYSIS COURSE CODE

: BWB 20803

Appendix 1

Coefficientsa

Model		Unstandardized Coefficients		
	β	Std. Error	t	
1 (Constant)	8.7514	20.1345	0.435	
X_1	0.0229	0.0115	1.980	
X_2	0.0731	0.0240	3.051	
X_1X_2	0.00071	0.00015	4.720	

a. Dependent Variable: Y

$ANOVA^b$							
Model	Sum of Squares	df	Mean Square	F	Sig.		
1 Regression	3954.712	3	1318.238	287.2288	0.000^{a}		
Residual	1588.141	346	4.590				
Total	5542.853	349					

a. Predictors: (Constant), X_1, X_2

b. Dependent Variable: Y

SEMESTER / SESSION : SEM I / 2021/2022

PROGRAMME CODE : BWQ

COURSE NAME

: APPLIED REGRESSION ANALYSIS COURSE CODE : BWB 20803

APPENDIX 2

MODEL 1

Model Summary

Model	R	R Square	Adjusted R square	Std. Error of the Estimate
1	0.805	0.648	0.620	12.9965

Predictors: (Constant), Expenditures

Coefficients

Model	Unstandardized			
	β	Std. Error	t	Sig.
l (Constant) Expenditures	18.354 3.879	14.808 0.794	1.239 4.887	0.237 0.000

Dependent Variable: Sales

ANOVA						
Model	Sum of Squares	df	Mean Square	F	Sig.	
1 Regression	4034.414	1	4034.414	23.885	0.000	
Residual	2195.822	13	168.909			
Total	6230.236	14				

Predictors: (Constant), Expenditures

SEMESTER / SESSION : SEM I / 2021/2022

PROGRAMME CODE : BWQ

COURSE NAME

: APPLIED REGRESSION ANALYSIS COURSE CODE

: BWB 20803

MODEL 2

Model Summary

Model	R	R Square	Adjusted R square	Std. Error of the Estimate
-	0.521	0.271	0.215	18.6875

Predictors: (Constant), Advertising expenditures

Coefficients

Model	Unstandardized	d Coefficients		
	β	Std. Error	t	Sig.
(Constant) Advertising expenditures	112.463 -2.727	11.776 1.239	9.551 -2.200	0.000 0.046

Dependent Variable: Sales

ANOVA						
Model	Sum of Squares	df	Mean Square	F	Sig.	
Regression	1690.364	1	1690.364	4.840	0.046	
Residual Total	4539.872 6230.236	13 14	349.221			

Predictors: (Constant), Advertising expenditures

Dependent Variable: Sales

Defend the second of

SEMESTER / SESSION : SEM I / 2021/2022

PROGRAMME CODE : BWQ

COURSE NAME

: APPLIED REGRESSION ANALYSIS COURSE CODE

: BWB 20803

MODEL 3

Model Summary

Model	R	R Square	Adjusted R square	Std. Error of the Estimate
	0.372	0.139	0.072	20.3171

Predictors: (Constant), Prorated share

Coefficients

Model	Unstand Coeffi			
	β	Std. Error	t	Sig.
(Constant) Prorated share	66.972 3.344	16.000 2.311	4.186 1.447	0.001 0.172

Dependent Variable: Sales

ANOVA						
Model	Sum of Squares	df	Mean Square	F	Sig.	
Regression	864.026	1	864.026	2.093	0.172	
Residual	5366.210	13	412.785			
Total	6230.236	14				

Predictors: (Constant), Prorated share

SEMESTER / SESSION : SEM I / 2021/2022

PROGRAMME CODE

: BWQ

COURSE NAME

: APPLIED REGRESSION ANALYSIS COURSE CODE

: BWB 20803

MODEL 4

Model Summary

Model	R	R Square	Adjusted R square	Std. Error of the Estimate
	0.835	0.697	0.646	12.5461

Predictors: (Constant), Advertising expenditures, Expenditures

Coefficients

Model	Unstandardized	, , , , , , , , , , , , , , , , , , , ,		
	β	Std. Error	t	Sig.
(Constant)	-25.580	34.556	-0.74	0.473
Expenditures	5.353	1.304	4.104	0.001
Advertising expenditures	1.978	1.417	1.396	0.188

Dependent Variable: Sales

ANOVA						
Model	Sum of Squares	df	Mean Square	F	Sig.	
Regression	4341.373	2	2170.686	13.790	0.001	
Residual	1888.863	12	157.405			
Total	6230.236	14				

Predictors: (Constant), Advertising expenditures, Expenditures

SEMESTER / SESSION : SEM I / 2021/2022

PROGRAMME CODE : BWO

COURSE NAME

: APPLIED REGRESSION ANALYSIS COURSE CODE

: BWB 20803

MODEL 5

Model Summary

Model	R	R Square	Adjusted R square	Std. Error of the Estimate
	0.957	0.916	0.901	6.6220

Predictors: (Constant), Prorated share, Expenditures

Coefficients

Model	Unstandardize	Unstandardized Coefficients		
	β	Std. Error	t	Sig.
(Constant)	-20.372	9.814	-2.076	0.060
Expenditures	4.312	0.410	10.506	0.000
Prorated share	4.718	0.765	6.170	0.000

Dependent Variable: Sales

ANOVA						
Model	Sum of Squares	df	Mean Square	F	Sig.	
Regression Residual Total	5704.027 526.209 6230.236	2 12 14	2852.014 43.851	65.039	0.000	

Predictors: (Constant), Prorated share, Expenditures

SEMESTER / SESSION : SEM I / 2021/2022

PROGRAMME CODE

: BWQ

COURSE NAME

: APPLIED REGRESSION ANALYSIS COURSE CODE

: BWB 20803

MODEL 6

Model Summary

Model	R	R Square	Adjusted R square	Std. Error of the Estimate
	0.827	0.684	0.631	12.8151

Predictors: (Constant), Prorated share, Advertising expenditures

Coefficients

Model	Unstandardize			
	β	Std. Error	t	Sig.
(Constant) Advertising expenditures Prorated share	84.219 -4.237 6.321	10.781 0.932 1.598	7.812 -4.547 3.955	0.000 0.001 0.002

Dependent Variable: Sales

ANOVA						
Model	Sum of Squares	df	Mean Square	F	Sig.	
Regression	4259.516	2	2129.758	12.968	0.001	
Residual Total	1970.720 6230.236	12 14	164.227			

Predictors: (Constant), Prorated share, Advertising expenditures

SEMESTER / SESSION : SEM I / 2021/2022

PROGRAMME CODE : BWQ

COURSE NAME

: APPLIED REGRESSION ANALYSIS COURSE CODE

: BWB 20803

MODEL 7

Model Summary

Model	R	R Square	Adjusted R square	Std. Error of the Estimate
	0.957	0.916	0.893	6.8940

Predictors: (Constant), Prorated share, Advertising expenditures, Expenditures

Coefficients

Model	Unstandardized			
	β	Std. Error	t	Sig.
(Constant)	-16.058	19.071	-0.842	0.418
Expenditures	4.146	0.751	5.520	0.000
Advertising expenditures	-0.236	0.881	-0.268	0.794
Prorated share	4.831	0.901	5.361	0.000

Dependent Variable: Sales

ANOVA					
Model	Sum of Squares	df	Mean Square	F	Sig.
Regression	5707.438	3	1902.479	40.029	0.000
Residual Total	522.798 6230.236	11 14	47.527		

Predictors: (Constant), Prorated share, Advertising expenditures, Expenditures

