

# UNIVERSITI TUN HUSSEIN ONN MALAYSIA

## FINAL EXAMINATION SEMESTER I SESSION 2021/2022

**COURSE NAME** 

: BASIC ELECTRIC AND ELECTRONIC

COURSE CODE

: DAM13503 / DAM21403

PROGRAMME CODE

: DAM

**EXAMINATION DATE** 

: JANUARY / FEBRUARY 2022

DURATION

: 3 HOURS

INSTRUCTION

: 1. ANSWER FIVE (5) QUESTIONS

ONLY.

2. THIS FINAL EXAMINATION IS AN

ONLINE ASSESSMENT AND

CONDUCTED VIA CLOSE BOOK.

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES



CONFIDENTIAL

## CONFIDENTIAL

### DAM 13503/DAM21403

| Q1 | (a)                                                                             | Explain the characteristic of series circuit and parallel circuit in terms of voltage and current. |                                                                                                              |                    |
|----|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------|
|    |                                                                                 |                                                                                                    |                                                                                                              | (4 marks)          |
|    | (b)                                                                             | Refer to Figure Q1(b), calculate;                                                                  |                                                                                                              |                    |
|    |                                                                                 | (i)                                                                                                | The total resistance, R <sub>T</sub>                                                                         |                    |
|    |                                                                                 |                                                                                                    |                                                                                                              | (4 marks)          |
|    |                                                                                 | (ii)                                                                                               | The voltage drop across resistance $R_3$ ( $V_{R3}$ ), resistance $R_5$ ( $V_{R5}$ ) and $R_6$ ( $V_{R6}$ )  |                    |
|    |                                                                                 |                                                                                                    |                                                                                                              | (6 marks)          |
|    |                                                                                 | (iii)                                                                                              | The current flow through resistance $R_3$ ( $I_{R3}$ ), resistance $R_5$ ( $I_{R5}$ ) and $R_6$ ( $I_{R6}$ ) |                    |
|    |                                                                                 |                                                                                                    |                                                                                                              | (6 marks)          |
| Q2 | (a)                                                                             | Expla                                                                                              | nin briefly Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (                                          | KVL).<br>(4 marks) |
|    | (b)                                                                             | Basec                                                                                              | d on Figure Q2(b), by using the principle of KCL and KVL, show;                                              |                    |
|    |                                                                                 | (i)                                                                                                | The current, I at each junction of the circuit.                                                              |                    |
|    |                                                                                 |                                                                                                    |                                                                                                              | (8 marks)          |
|    |                                                                                 | (ii)                                                                                               | The voltage drop, V at each resistor.                                                                        | (4 - 1 )           |
|    |                                                                                 |                                                                                                    |                                                                                                              | (4 marks)          |
|    |                                                                                 | (iii)                                                                                              | The power distribution at each resistor.                                                                     | (4 marks)          |
|    |                                                                                 |                                                                                                    |                                                                                                              | ,                  |
| Q3 | Figure Q3 shows a magnetic circuit with a 10 V battery coupled to cm iron core. |                                                                                                    |                                                                                                              | with a 20          |
|    | (a)                                                                             | Deter                                                                                              | mine the magneto-motive force (mmf).                                                                         |                    |
|    |                                                                                 | (5                                                                                                 |                                                                                                              | (5 marks)          |
|    | (b)                                                                             | Define                                                                                             | e the magnetic field intensity.                                                                              | (5 1 )             |
|    |                                                                                 |                                                                                                    |                                                                                                              | (5 marks)          |
|    | (c)                                                                             | Compute the flux density, $B$ in a core with $\mu_r$ of 600.                                       |                                                                                                              | (5 marks)          |
|    | (d)                                                                             | Evaluate total flux, Ø at each pole with a 4cm <sup>2</sup> surface area.                          |                                                                                                              |                    |
|    |                                                                                 |                                                                                                    |                                                                                                              | (5 marks)          |

## CONFIDENTIAL

#### DAM 13503/DAM21403

Q4 (a) Explain THREE (3) factors that determine the capacitance of a capacitor.

(6 marks)

(b) Determine the amount of charge, Q, stored by a capacitor if;

(i) 
$$C = 15 \mu F \text{ and } V = 15 V$$

(2 marks)

(ii) 
$$C = 250 \text{ pF} \text{ and } V = 120 \text{ V}$$

(2 marks)

(iii) 
$$C = 0.56 \mu F \text{ and } V = 50 \text{ V}$$

(2 marks)

(c) Calculate the capacitance, C, of a capacitor for each set of physical characteristics listed below;

(i) 
$$A = 0.1 \text{ cm}^2$$
,  $d = 0.005 \text{ cm}$ ,  $K\epsilon = 1$ 

(4 marks)

(ii) 
$$A = 1 \text{ cm}^2$$
,  $d = 5 \times 10^{-6} \text{ cm}$ ,  $K\varepsilon = 6$ 

(4 marks)

Q5 (a) State THREE (3) types of non-sinusoidal wave and explain its use in application circuit.

(3 marks)

- (b) State the angle for sine wave in alternating voltage;
  - (i) When reach its maximum positive value.

(1 mark)

(ii) When reach its maximum negative value.

(1 mark)

(iii) When its cross the zero axis.

(1 mark)

- (c) If a sine wave has a peak value of 50 V, calculate;
  - (i) Peak to peak value.

(2 marks)

(ii) The average value.

(2 marks)

(iii) The root mean square value, RMS.

(2 marks)



## CONFIDENTIAL

#### DAM 13503/DAM21403

(d) Find the instantaneous value of alternating voltage,  $v = 10 \sin (3\pi \times 10^4 \times t \times 57.3)$  volt at:

(i)  $t = 15 \mu s$ 

(2 marks)

(ii)  $t = 50 \mu s$ 

(2 marks)

(iii)  $t = 75 \mu s$ 

(2 marks)

(iv)  $t = 100 \mu s$ 

(2 marks)

Q6 (a) Explain briefly TWO (2) ways to increase inductance.

(2 marks)

(b) Calculate the inductance of long coil if this coil has an air core with a diameter of 3 cm. It has 50 turns wire and build to 20 cm long coil.

(2 marks)

- (c) 2 Inductors of 1 H and 2 H are connected to a 240 V, 50 Hz power supply. Determine;
  - (i) The total current flow for the circuit if the 2 inductor is connected in series. (2 marks)
  - (ii) The total current flow for the circuit if the 2 inductor is connected in parallel. (2 marks)
- (d) Referring Figure Q6(d), calculate:
  - (i) Secondary Power 1, P<sub>1</sub>

(2 marks)

(ii) Secondary Power 2, P<sub>2</sub>

(2 marks)

(iii) Primary Power, Pp

(2 marks)

(iv) Secondary Load 1, R<sub>1</sub>

(2 marks)

(v) Secondary Voltage 2, V<sub>2</sub>

TERBUKA

(2 marks)

(vi) Secondary number of turn 2, N<sub>2</sub>

(2 marks)



#### FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 20212022 COURSE NAME: BASIC ELECTRIC AND ELECTRONIC

PROGRAMME CODE: DAM

COURSE CODE: DAM 13503 / DAM 21403



Figure Q1(b)



### FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 20212022

COURSE NAME: BASIC ELECTRIC AND ELECTRONIC

PROGRAMME CODE: DAM

COURSE CODE: DAM 13503 / DAM 21403



Figure Q3



Figure Q6(d)