

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2022/2023

COURSE NAME

INSTRUMENTATION FOR PROCESS

CONTROL

COURSE CODE

: BEV 40503

PROGRAMME CODE :

BEV

EXAMINATION DATE :

FEBRUARY 2023

DURATION

: 3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS A **OFFLINE** ASSESSMENT AND CONDUCTED VIA **CLOSED BOOK**

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA **CLOSED BOOK**

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

The state of the s

Q1	(a)	(a) Describe the importance of process control in term of:	
		(i)	Consistent product quality. (2 marks
		(ii)	Lower manufacturing costs. (2 marks)
at 28° C the RTD resistance is 68 Ω and the dissipation constant is		e Q1(b) shows a three wires RTD bridge circuit. The RTD has $\alpha_0 = 0.004$ /° C C the RTD resistance is 68 Ω and the dissipation constant is 20mW /° C a rature 28° C. If resistance R1=R2= 500Ω , the supply is 10 V and resistance R3 riable used to null the bridge.	
		(i)	Determine the RTD resistance at 100° C without including the effects of dissipation.
			(2 marks)
		(ii)	Determine the RTD resistance at 100° C with including the effects of dissipation.
			(7 marks)
		id flow is to be controlled from 10 gal/min. The flow is measured using are plate system. A bellows measures the pressure with a LVDT output is 1.2 If the LVDT output voltage range is 0.12 V to 2.4 V:	
		(i)	Determine a constant for the pipe and liquid type, K in gal/min/psi ^{1/2} (4 marks)
		(ii)	Analyze the maximum liquid flow rate. (2 marks)
	(d)	0.0 to	d-state pressure sensor that outputs 20 mV/kPa for a pressure variation of 50 kPa will be used to measure the level of a liquid with a density of 1300 kg/m ² celeration due to gravity is 9.8 m/s ³ .
		(i)	Determine output voltage for level variations from 0 to 5 m (4 marks)
		(ii)	Determine the sensitivity for level measurement in mV/cm

(2 marks)

CO	NFID	ENTI	AL BEV 40503	
Q2	(a)	(i)	List THREE (3) main parts of control valve. (3 mark	s)
		(ii)	State THREE (3) types of control valve characteristics based on stem position and flow rate.	
			(3 mark	s)
		(iii)	Sketch the stem position versus flow rate in Q2(a)(ii). (5 mark	s)
	(b)		rol valve has a maximum flow of 50 cm ³ /s and a minimum of 2 cm ³ /s with the vel is 0.04 m. In this process control the opening stem position is 1.6 cm.	ne
		(i)	Determine the liquid flow rate if a linier valve control is applied. (2 mark	s)
		(ii)	Determine the liquid flow rate if an equal percentage valve control is applie (4 mark	
	(c)	percent	ess control has nominal flow rate of 65 m ³ /h. The valve actuator of an equal tage control valve used in this process control has a rangeability of 30 and turn stem travel of 5 cm.	
		(i)	Analyze the minimum and maximum flow rate of the control valve if nominal flow rate the valve to be half-open.	at
			(4 mark	s)
		(ii)	If the flow rate is 100 m ³ /hr, determine the stem opening position of the control valve in cm.	he
			(4 mark	s)
Q3	(a)	List FI	VE (5) signal transmission issue. (5 mark	s)
	(b)		rature is to be measured in the range of 10° C to 100° C with an accuracy Ω . The sensor is a resistance that varies linearly from 280 Ω to 1060 Ω for the	

- temperature range. Power dissipated in the sensor must be kept below 2 mW. An analog signal conditioning that provides a voltage varying linearly from 1 to 5 V for this temperature range.
 - Analyze the maximum current. (i)

(2 marks)

(ii) Determine signal conditioning equation.

(5 marks)

3

CONFIDENTIAL

BEV 40503

	(c)		surement of pressure using a sensor that outputs 20 mV/kPa must and a 4-bit ADC with a 10-V reference is used.	measure to
		(i)	Calculate and draw a circuit to interface the sensor and the ADC.	(7 marks)
		(ii)	Analyze the pressure resolution of this signal conditioning.	(6 marks)
Q4	(a)		e Q4(a) shows a ladder logic diagram and its lookup table, analyze of the given lookup table	the output (4 marks)
	(b)	- Who	ess control has a valve and a pump has operation sequence: en the switch-A is closed, the pump is stopped and the valve closed en the switch-B is closed, the pump is run and the valve open en the switch-C is closed, the pump is stopped and the valve closed	
		In orde	er to design a PLC ladder diagram program of this process control	
		(i)	List kind of input switch variable.	(3 marks)
		(ii)	List kind of internal relay variable.	(2 marks)
		(iii)	Sketch a PLC ladder diagram programming	(10 marks)
	(c)	(i)	List FOUR (4) types of communication protocols used in SCADA	system. (3 marks)
		(ii)	Describe an advantage of a SCADA system.	

-END OF QUESTIONS -

TERBUKA

(2 marks)

FINAL EXAMINATION

SEMESTER/SESSION: SEM I 2022/2023

PROGRAMME CODE: BEV

COURSE NAME

: INSTRUMENTATION FOR PROCESS COURSE CODE : BEV 40503 CONTROL

Figure Q1(b)

A	В	Output
0	0	
0	1	
1	0	
1	1	

Figure Q4(a)