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Q1  The velocity v of a falling parachutist is given by
V= - (] _ o elm)t ) )

. (s
where

2

¢=9.8ms ~ is the gravitational force, and

¢=15 l(,gs_1 is the drag coefficient.
Taking initial guess of the parachutist mass m as between 40 kg to 60 kg, calculate the
mass m using false-position method when the velocity of the falling parachutist is
35 ms” at time f =9s. Do the iteration until |_f'(m,~)] <& =0.0005.
[8 marks]

Q2 A steady-state concentration of a substance that reacts with first-order kinetics in an
axially-dispersed plug-flow reactor can be expressed as

D € =2, ¥y, U Ciot — &1 ke =0
(Ax)’ 2(Ax) b

where D is dispersion coefficient (m*/hr). ¢, is concentration at node i (mol/L), x is
distance (m), U is fluid velocity (m/hr) and k is reaction rate per hour. The parameter
values for the mass balance problem are D=2, U=1, k=02 Ax=25,
¢(x=0)=80and ¢(x=10)=20.

(a) Analyse the above problem by showing that the problem can be written into a
system of linear equations as follows:

084 012 0 \(¢) (416
052 —084 0.12 |[c|=| 0O
0 052 -084)\c,) |24

[7 marks]

(b) Hence, solve the system using Gauss-Seidel iteration method with initial
concentrations, ¢, =54, ¢, =37 andc¢,=26. Do the iteration until

(k+1)

max {| ¢; c,(-k) |} <&£=0.005.

1<i<n

[7 marks]
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Q3  Consider the matrix

Identify all ae R for which

(a) A is invertible (or nonsingular).
[3 marks]

(b) A is strictly diagonally dominant.
[4 marks]

(c) A satisfies one of the symmetric positive definite conditions that is
(c‘r”)1 Sl VI 7=L 0 wu b

LU |
1#

[3 marks]

Q4  Let A(x) be the interpolating polynomial for the data (0,0), (0.5,9), (1.3) and (2,2).
Determine the value of y if the coeflicient of x° in P,(x) is 6 by using Lagrange
polynomial interpolation.

[12 marks]
Q5 For a function f, the Newton divided-difference table is
xﬂ ./‘ [‘rl_}] ‘f' ['YD Gl "cl ] »f [XU’ xl 2 x:]
0 0
3
1 2 3
?
) )
(a) Calculate the missing entries in the table.
[6 marks]
(b) Find the interpolating polynomial p(x).
[2 marks]
Q6  The flow rate of an incompressible fluid in a pipe of radius 1 is given by
" |
(2= L 2me¥ dr,
3
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Q7

Q8

where r is the distance from centre of the pipe and V is the velocity of the fluid.

(a) Use suitable Simpson’s rule to estimate Q if only the following tabulated
velocity measurements }" as shown in Table Q6.1 are available.

Table Q6.1 Tabulated velocity measurements

r | 08 | 9d 02 [ 03 | 04 0.5 be | 07 | B8 | 0.5 | 1.D

V| 1.0 099 | 096|091 | 08| 075 | 0.64 | 051 | 0.36 | 0.19 | 0.0

[4 marks]
(b) Then, compare your result with the value obtained analytically using ¥ =1-r7.

[6 marks]

By expanding f(x+ /) in a Taylor series up to three terms, deduce an expression for

the truncation error ¢’ in the first derivative 2-point forward difference formula,

f'(-\‘+/1)—,f'(-\')+er'_

f(x)=: h

[4 marks]

Given A=

o = K
s g e
o - O

(a) Show that all the eigenvalues are either positive or negative signs by using
Gerschorin’s theorem.
[6 marks]

(b) If the dominant eigenvalue is 4.01, compute the smallest eigenvalue and its
associated eigenvector by

(1) shifted power method.

(11) inverse power method.

“ % . 7 5 -
Start the iteration with v'"’ =(1 1 1) and stop the iteration when

|y =iy | <005 .

[12 marks]
(c) Analyse the validity of the results in Q8(b)(i) and Q8(b)(ii).
[6 marks]
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Q9  The following methods can be used to solve an ODE x'= f(¢,x) . For each method,

analyse if it has the following properties: whether it is Taylor series, Second-order
Runge-Kutta type or multistep method, and whether it is explicit or implicit method.

oo 2 2

(a) I hf(\ - 1;)-1-211](.\', +§h, ¥ +§k|) ;

[2 marks]
® ya=y+= [Jf(x h R i e |

[2 marks]
© =.!—-’.-+1@f'[x, 42, g+ 2% 0) )}

[2 marks]
@ Y =2 +A (%) .

[2 marks]

/

(e) Yui SV, +é[23,/'(x‘,y,)—16j'(.\', w M ISR B, 2)] )

[2 marks]

- END OF QUESTIONS -
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APPENDIX A

Formula:

. Gauss-Seidel iteration method
False Position method

P RACHRACY b, — Zau alf = g
b ) f(a) 30 e e  ¥i=12,3,. 0

4

Lagrange polynomial interpolation

P(x)= Z;Lf(x)_f'(xr) W=, 2. 3.0, L(x)= H ((; —_i ))

."l

Newton divided-difference polynomial

P ()= [0+ fi (=) P - M — )

Fooote [~ Y- X ) s (= %i)

Simpson’s rule

ﬁfunv~fnuu+ng+4§:f+ﬂ§:f
jfuwrnmrh+”“3“+h+ﬁ+f+ +ﬁ4+ﬁﬂ}
S S fy 4t S

flx+h)—f(x)

2-point forward difference formula

h

Eigenvalues Av=Av
Gerschorin’s theorem

n

r;::Z|a” [ D,={ZEC:|z—cr”|Sf;}, A EUD fork=L2..7
1

1# .
Shifted power method

e ; (k1)
Agine = A= 51, Aattess = Asutica + V, = Vg =V

Inverse power method

1 .
vV = zvlhn

Asmallcsl = e VIIW’C[‘SC

InVerse
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