

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

NUMERICAL METHODS FOR FLUID

DYNAMICS

COURSE CODE

BWA 33203

PROGRAMME CODE :

BWA

EXAMINATION DATE :

JULY/AUGUST 2023

DURATION

3 HOURS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS

CONDUCTED VIA

☐ Open book

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION

CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

Q1 4th order Runge-Kutta method for $\frac{dy}{dx} = f(x, y)$ is given as follows:

$$y_{i+1} = y_i + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4),$$

where

$$k_1 = f(x_i, y_i),$$

$$k_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h),$$

$$k_3 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h),$$

$$k_4 = f(x_i + h, y_i + k_3 h).$$

Hence, write the formula of 4th order Runge-Kutta for:

(a)
$$\frac{dy_1}{dx} = f_1(x, y_1, y_2), \frac{dy_2}{dx} = f_2(x, y_1, y_2).$$

(6 marks)

(b)
$$\frac{dy_1}{dx} = f_1(x, y_1, y_2, y_3), \frac{dy_2}{dx} = f_2(x, y_1, y_2, y_3), \frac{dy_3}{dx} = f_3(x, y_1, y_2, y_3).$$

(7 marks)

(c) Hence, solve the following set of differential equations using 4th order Runge-Kutta by assuming that $y_1(1) = 4$ and $y_2(1) = 6$. Integrate to x = 1.5 with $\Delta x = 0.5$ (use 4 decimal places).

$$\frac{dy_1}{dx} = y_1,$$

$$\frac{dy_2}{dx} = 4 - y_2 + y_1.$$

(11 marks)

Q2 Consider

$$I = \int_{a}^{b} g(x) dx,$$

where

$$g(x) = \int_{c}^{d} (x^2 + y) dy.$$

(a) By using trapezoidal rule to calculate *I*, the following table is obtained.

Table Q2.1

i	X_i	y_i	$g(x_i)$
0	1.0		3.50
1	1.5		4.75
2	2.0	2.0	6.50
3	2.5	2.5	8.75
4	3.0	3.0	11.50
5	3.5		14.75
6	4.0		18.50

From Table Q2.1:

(i) Determine the value of a, b, c, d, Δx and Δy .

(6 marks)

(ii) Show the calculation of any value of g(x). (Choose only one value).

(6 marks)

(iii) Calculate I using trapezoidal rule.

(3 marks)

(b) From **Q2(a)(i)** calculate *I* using 2-point Gauss quadrature.

(10 marks)

CONFIDENTIAL

(a)

BWA 33203

- Q3 Given two dimensional second-order partial differential equation (PDE) with dependent variable ϕ and independent variables x and y. Consider a, b, c, d, e, f and g are constants.
 - (a) Hence, write the general form of PDE.

(2 marks)

- (b) Classify the three types of the PDE with one example(s) for each type. Write the example(s) from the following options:
 - (i) Heat equation.
 - (ii) Wave equation.
 - (iii) Laplacian equation.
 - (iv) Poisson's equation.

(10 marks)

Q4 Assume T(x, y) is a temperature of a heated plate in the form of Laplacian equation with Dirichlet boundary conditions as follows:

$$T(x,0) = 0$$
, $T(x,1) = 100$ at $0 \le x \le 1$,
 $T(0, y) = 80$, $T(1, y) = 60$ at $0 \le y \le 1$.

Write the related equation.

(1 marks)

(b) Sketch the geometrical configuration of the problem.

(2 marks)

(c) Apply the central differences to discretise **Q4(a)** and **Q4(b)**. Use four uniform subintervals in the x and y directions to form a matrix $A_{9\times9}T_{9\times1} = B_{9\times1}$. (Without a solution).

(16 marks)

- END OF QUESTIONS -

4

CONFIDENTIAL

APPENDIX A

- 1. Trapezoidal rule for $\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{2} \left\{ f_0 + \sum_{i=1}^{n-1} f_i + f_n \right\}$
- 2. 2-point Gauss quadrature for $\int_{-1}^{1} f(x)dx \approx f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$