

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2022/2023**

COURSE NAME

: CIVIL ENGINEERING MATERIAL

COURSE CODE

: BFC10502

PROGRAMME CODE : BFF

EXAMINATION DATE :

JULY/ AUGUST 2023

DURATION

: 2 HOURS

.

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED

BOOK.

3. STUDENTS ARE PROHIBITED TO CONSULT THEIR MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED

VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

TERBUKA

CONFIDENTIAL

CONFIDENTIAL

BFC10502

- Q1 (a) The construction industry uses a variety of cement types, each having unique characteristics. Proposed a suitable type of cement with justification to construct the following structure:
 - (i) Reinforced concrete beam

(2 marks)

(ii) Concrete wall rendering

(2 marks)

(iii) Large dams

(2 marks)

(iv) Foundations with high sulphate ground water

(2 marks)

(b) Cement is a crucial material in the construction of buildings. However, because it is a manufactured material created through various processes, it is important to ensure compliance with consistency and strength test. Discuss procedures of the test.

(12 marks)

(c) **TABLE Q1** shows the results of a sieve analysis test performed on a sample of fine aggregate. Examine the data and determine the fine aggregate modulus.

(15 marks)

TABLE Q1

Sieve Size, (mm)	Weight Retained, (g)		
4.75	0		
2.36	56.9		
2	83.1		
1.18	83.1		
0.6	151.4		
0.3	40.4		
0.15	72		
0.075	58.3		
Pan	15.6		

TERBUKA

CONFIDENTIAL

BFC10502

As a batching plant engineer, you are required to produce a concrete mixture for pre-cast **Q2** (a) concrete beams with grade C40. Using the following data:

Characteristic strength of concrete

: 40 N/mm² at 28 days

Proportion defective

: 10% (k=1.28)

Standard deviation

: 8 N/mm²

Type of cement

: Ordinary Portland Cement

Slump

: 30-60 mm

Maximum crush aggregate

: 20 mm

Type of fine aggregate

: River sand

Relative density of crushed aggregate (SSD)

: 2.7

Percentage passing 600 µm fine aggregate

: 60%

(i) Complete the design mix using concrete design mix form given.

(20 marks)

Calculate the volume of the raw material (cement, water, fine, and coarse (ii) aggregate) of the concrete beam with the dimension of 300 mm x 600 mm x 6 m length.

(5 marks)

(b) Several tests including density, water absorption, and compression were performed on fired clay bricks. The obtained results are presented in TABLE Q2.

TABLE Q2

Brick no.	Brick size				Water absorption test		Compression test	
	length (mm)	Width (mm)	Depth (mm)	Mass (kg)	Mass dry (kg)	Mass wet (kg)	Maximum force (kN)	
1	213	98	70	2.52	2.5	2.82	313	
2	212	98	70	2.5	2.48	2.8	323	
3	211	97	69	2.48	2.47	2.77	357	

(i) Calculate the average density of brick.

(3 marks)

(ii) Calculate the average percentage water absorption of brick.

(3 marks)

(iii) Determine the average compressive strength of brick in unit N/mm².

(4 marks)

CONFIDENTIAL

BFC10502

Q3 (a) The specific gravity (SG) of wood A and B is 0.4 and 0.5, respectively. Based on this information, determine which wood can be used as a structural component for constructing the building. Justify your answer.

(5 marks)

(b) List and illustrate FIVE (5) various flaws that can be found in wood.

(10 marks)

(c) Sketch the stress-strain relationship of a steel reinforcement. On that sketch, determine the region of yield strength, modulus of elasticity and ultimate stress.

(8 marks)

(d) Steel in the market has many types. State **SEVEN** (7) characteristics of high carbon steel. (7 marks)

- END OF QUESTIONS -

TERBUKA

FINAL EXAMINATION

SEMESTER/ SESSION: SEM II 2022/2023

COURSE NAME : CIVIL ENGINEERING MATERIAL

PROGRAMME CODE : BFF

IDSE CODE DE

COURSE CODE : BFC10502

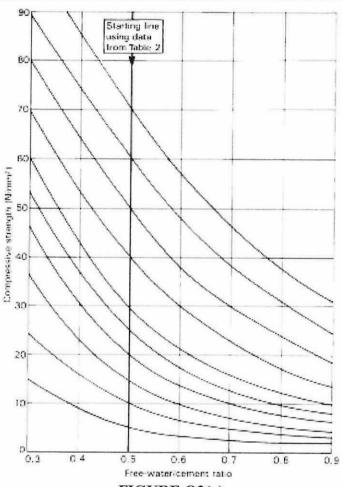


FIGURE Q2(a)

Table 2 Approximate compressive strengths (N/mm²) of concrete mixes made with a free-water/cement ratio of 0.5

Cement	Type of	Compressive strengths (N/mm²)				
strength	coarse	*****	Age (days)			
class	aggregate	3	7	28	91	
42.5	Uncrushed	22	30	42	49	
	Crushed	27	36	49	56	
52.5	Uncrushed	29	37	48	54	
	Crushed	34	43	55	61	

Throughout this publication concrete strength is expressed in the units N/mm².

 $1 \text{ N/mm}^2 = 1 \text{ MN/m}^2 = 1 \text{ MPa.}$ (N = newton; Pa = pascal.)

FIGURE Q2(b)

BFC10502

FINAL EXAMINATION

SEMESTER/ SESSION: SEM II 2022/2023

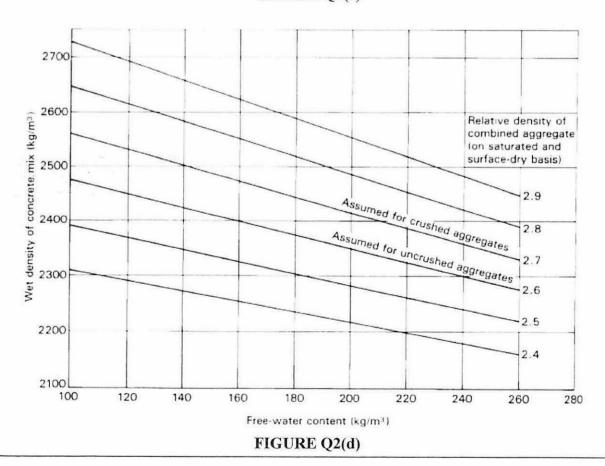
PROGRAMME CODE : BFF

COURSE NAME

: CIVIL ENGINEERING MATERIAL

COURSE CODE

: BFC10502


to give various Slump (mm)	s levels of wor	kability 0-10	10-30	30-60	60-180
Vebe time (s)		>12	6-12	3-6	0-3
Maximum size					
of aggregate	Type of				
(mm)	aggregate				
10	Uncrushed	150	180	205	225
	Crushed	180	205	230	250
20	Uncrushed	135	160	180	195
	Crushed	170	190	210	225
40	Uncrushed	115	140	160	175
	Crushed	155	175	190	205

Note: When coarse and fine aggregates of different types are used, the free-water content is estimated by the expression:

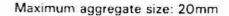
 $\frac{2}{3}Wf^{+}\frac{1}{3}W_{0}$

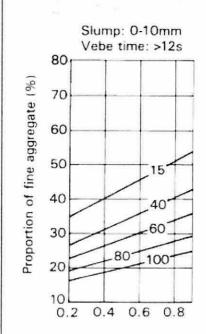
where W_{l} = free-water content appropriate to type of fine aggregate and W_{e} = free-water content approportiate to type of coarse aggregate

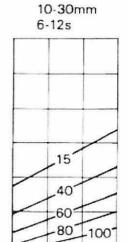
FIGURE Q2(c)

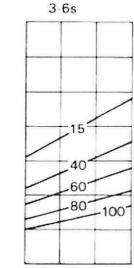
FINAL EXAMINATION

SEMESTER/ SESSION: SEM II 2022/2023

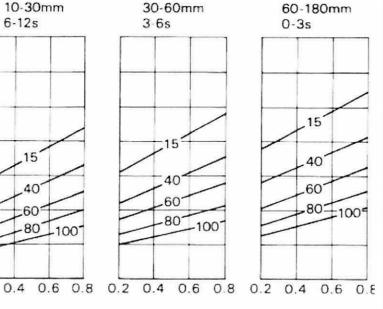

COURSE NAME


: CIVIL ENGINEERING MATERIAL


PROGRAMME CODE : BFF


COURSE CODE

: BFC10502



30-60mm

Free-water/cement ratio

FIGURE Q2(e)

Concrete Mix Design Form

stage	item		Reference or calculation	Values
1	1.1	Characteristic strength	Specified	ſdays
			_	Proportion defective%
	1.2	Standard deviation	Fig. 3	N/mm² or no data N/mm²
	1.3	Margin	C1	(k=) x =N/mm2
			Specified	N/mm²
	1.4	Target mean strength	C2	N/mm²
	1.5	Cement strength class	Specified	42.5/52.5
	1.6	Aggregate type: coarse		Crushed/Uncrushed
	196	Aggregate type: fine		Crushed/Uncrushed
	1.7	Free-water/cement ratio	Table 2, Fig. 4	
	1.8	Max. Free water/cement ratio	Specified	Use the lower value
2	2.1	Slump or VeBe time	Specified	Slumps
	2.2	Max. Aggregate size	Specified	mm
	2.3	Free-water content	Table 3	kg/m³
3	3.1	Cement content	C3	kg/m³
	3.2	Maximum Cement content	Specified	kg/m³
	3.3	Minimum Cement content	Specified	kg/m³
			Do not use less t	han 3.3 or more than 3.2kg/m³
	3.4	Modified free-water/cement		
		ratio		
4	4.1	Relative density of		
		aggregate (SSD)		known/assumed
	4.2	Concrete density	Fig. 5	kg/m³
	4.3	Total aggregate content	C4	= kg/m³
5	5.1	Grading of fine aggregate	Percentage passi	ing 600 micron sieve%
	5.2	Proportion of fine aggregate	Fig. 6	%
	5.3	Fine aggregate content		kg/m³
	5.4	Coarse aggregate content	C5	kg/m³

Quantities	Cement	water (kg or lt)	Fine aggregate (kg)	Coarse aggregate (kg)		
	(kg)			10 mm	20 mm	40 mm
Per m³ (to						
nearest 5 kg)						
Per trial mix						
of m ³						

