

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

FLUID MECHANICS

COURSE CODE

BBM 30103

PROGRAMME CODE :

BBA / BBG

EXAMINATION DATE :

JULY /AUGUST 2023

DURATION

3 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA **CLOSED BOOK**.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION

CONDUCTED VIA CLOSED BOOK.

THIS QUESTION PAPER CONSISTS OF FIFTHTEEN (15) PAGES

CONFIDENTIAL

- Q1 (a) Convert the following measurements to S.I. Units.
 - (i) 32 psi

(2 marks)

(ii) 90 mph

(2 marks)

(b) The volume rate of flow, Q, through a pipe containing a slowly moving liquid is given by the equation

$$Q = \frac{\pi R^4 \Delta p}{8\mu l}$$

where R is the pipe radius, Δp the pressure drop along the pipe, μ a fluid property called viscosity ($FL^{-2}T$), and l the length of pipe. What are the dimensions of the constant $\pi/8$? Classify whether this equation is a general homogeneous equation.

(6 marks)

(c) Figure Q1(c) shows a manometer with pipe A contains gasoline (SG = 0.7), pipe B contains oil (SG = 0.9), and the manometer fluid is mercury. The initial differential reading is 0.30 m as shown in the figure. Determine the new differential reading if the pressure in pipe A is decreased 2.5 kPa, and the pressure in pipe B remains constant.

(10 marks)

Q2 (a) The inverted U-tube manometer of **Figure Q2(a)** contains oil (SG = 0.9) and water as shown. The pressure differential between pipes A and B, $p_A - p_B$, is -5 kPa. Determine the differential reading, h.

(10 marks)

(b) The massless, 4-ft.-wide gate shown in **Figure Q2(b)** pivots about the frictionless hinge O. It is held in place by the 1500 *lb* counterweight *W*. Determine the water depth, *h*.

(10 marks)

Q3 (a) A pressurized tank of water as shown in Figure Q3(a) has a 10-cm-diameter orifice at the bottom, where water discharges to the atmosphere. The water level is 2.5 meters above the outlet. The tank air pressure above the water level is 250 kPa (absolute) while the atmospheric pressure is 100 kPa. Neglecting frictional effects, determine the initial discharge rate (in m^3/s) of water from the tank.

(10 marks)

(b) The water level in a tank as shown in Figure Q3(b) is 20m above the ground. A hose is connected to the bottom of the tank, and the nozzle at the end of those hose is pointed straight up. The tank is at sea level, and the water surface is open to the atmosphere. In the line leading from the tank to the nozzle is a pump, which increases the pressure of water. If the water jet rises to a height of 27m from the ground, determine the minimum pressure rise supplied by the pump to the water line.

(10 marks)

Q4 (a) Explain the flow characteristics of laminar, transitional and turbulent pipe flows using Reynolds number as an indicator.

(6 marks)

(b) Determine the Reynolds number for a type of oil (SG = 0.85, $\mu = 0.020 \text{ Ns/m}^2$) that flow with flowrate of 0.45 m³/s through a round pipe with diameter of 500 mm. Indicate the type of flow associated with your results.

(6 marks)

- (c) Water flows through a horizontal plastic pipe with a diameter of 0.2m at a velocity of 10cm/s.
 - (i) Determine the pressure drop per meter pipe using Moody chart. (4 marks)
 - (ii) Calculate the power lost to the friction per meter of pipe. Power lost is defined by multiplying pressure and flowrate.

(4 marks)

Q5 (a) The drag characteristics of a torpedo are to be studied in a water tunnel using a 1:5 scale model. The tunnel operates with freshwater at 20°C ($\nu = 1.004 \times 10^{-6} \text{ m}^2/\text{s}$), whereas the prototype torpedo is to be used in seawater at 15.6°C ($\nu = 1.17 \times 10^{-6} \text{ m}^2/\text{s}$). Calculate the velocity required in the water tunnel to simulate the behavior of the prototype moving with a velocity of 30 m/s.

(8 marks)

(b) The pressure rise, Δp , across a pump can be expressed as

$$\Delta p = f(D, \rho, \omega, Q)$$

where D is the impeller diameter, ρ is the fluid density, ω is the rotational speed (measured in per second) and Q the volumetric flowrate. Using the Buckingham Pi theorem, develop a suitable set of pi terms for this problem.

(12 marks)

-END OF QUESTIONS-

SEMESTER / SESSION: SEMESTER II / 2022/2023

COURSE NAME

: FLUID MECHANICS

PROGRAMME CODE : BBA / BBG

COURSE CODE : BBM 30103

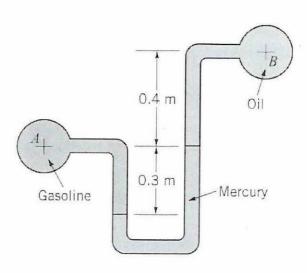


FIGURE Q1(c)

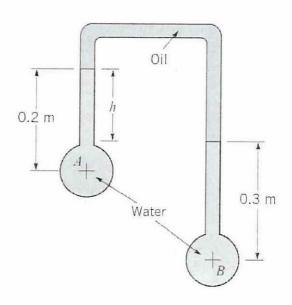


FIGURE Q2(a)

SEMESTER / SESSION : SEMESTER II / 2022/2023

COURSE NAME : FLUID MECHANICS

PROGRAMME CODE : BBA / BBG

COURSE CODE : BBM 30103

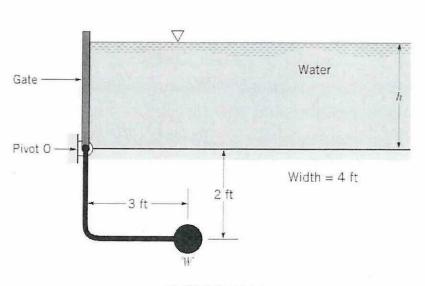


FIGURE Q2(b)

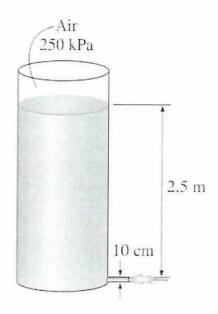


FIGURE Q3(a)

6

SEMESTER / SESSION: SEMESTER II / 2022/2023

COURSE NAME : FLUID MECHANICS

PROGRAMME CODE : BBA / BBG

COURSE CODE : BBM 30103

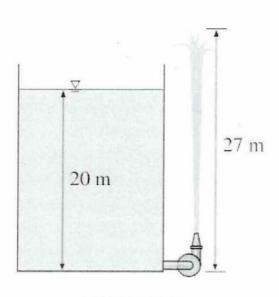


FIGURE Q3(b)

SEMESTER / SESSION: SEMESTER II / 2022/2023

COURSE NAME : FLUID MECHANICS PROGRAMME CODE : BBA / BBG

COURSE CODE : BBM 30103

LIST OF FORMULA

List of Useful Formulas & Fluid Properties

Newton's Law of Viscosity, $\tau = \mu \frac{du}{du}$ τ =shear stress; μ =viscosity

Specific Weight, $\omega = \rho g$

Specific Gravity, S.G. = $\frac{\rho}{\rho_{H_2OB4^{\circ}C}}$

 $^{\circ}R = ^{\circ}F + 460$

Ideal Gas Law, $p = \rho RT$

p=pressure

 $\rho = density$

T = Temperature in Kelvin

 $R = 287Jkq^{-1}K^{-1} = 4110Jkq^{-1}K^{-1}$

Pressure Equation

 $p = p_o + \rho g h = p_o + \rho h$

Gravity, $g = 9.81m/s^2 = 32.2ft/s^2$

 $P_{atm} = 101.33kPa(abs) = 2116.2lb/ft^2(abs) = 14.7psi(abs)$

 $\rho_{air} = 1.225 kg/m^3 = 2.38 \times 10^{-3} slugs/ft^2$

 $\gamma_{air} = 12.014 N/m^3 = 7.647 \times 10^{-2} lb/ft^3$

Common Liquid Properties

Mercury, $\gamma_{Hg} = 847 lb/ft^3 = 133 kN/m^3$ Water, $\gamma_{H_2O} = 62.4 lb/ft^3 = 9.81 kN/m^3$, $\rho_{H_2O} = 1000 kg/m^3$

Glycerin, $\gamma_{glycerin} = 78.4lb/ft^3$

Hydrostatic Pressure on a Plane Surface

Resultant Force, $F_R = \gamma h_c A$, $h_c = \text{centroid distance from surface}$ A = area,()_c = centroid

Position of Resultant Force $y_R = \frac{I_{xc}}{y_c A} + y_c$

$$y_R = \frac{I_{xc}}{y_c A} + y_c$$

$$x_R = \frac{I_{xyc}}{y_c A} + x_c$$

Bernoulli Equation

$$P_1 + \frac{1}{2}\rho V_1^2 + \gamma z_1 = P_2 + \frac{1}{2}\rho V_2^2 + \gamma z_2$$

or
$$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + z_2$$

Conservation of mass, $\rho_1 A_1 V_1 = \rho_2 A_2 V_2$ or $A_1 V_1 = A_2 V_2$ given $\rho_1 = \rho_2$

SEMESTER / SESSION : SEMESTER II / 2022/2023

COURSE NAME : FLUID MECHANICS

PROGRAMME CODE : BBA / BBG

COURSE CODE : BBM 30103

Viscous Flow in Pipes

Reynolds Number. $Re = \frac{\rho VD}{\mu} = \frac{VD}{v}$ where kinematic viscosity, $v = \frac{\mu}{\rho}$

Entrance Length

 $\frac{l_e}{D} = 0.06 Re$ (Laminar Flow)

 $\frac{l_e}{D} = 4.4 (Re)^{1/6}$ (Turbulent Flow)

Fully Developed Laminar Pipe Flow

Pressure Drop, $\Delta p = \frac{4l\tau_w}{D}$

 τ_w = wall sheer stress

Volume Flowrate, $Q = \frac{\pi D^4 \Delta p}{128\mu l}$

l = length

Friction Factor, $f = \frac{64}{Re} = \frac{8\tau_w}{\rho V^2}$

Pressure drop for a horizontal pipe, $\Delta p = f \frac{l}{D} \frac{\rho V^2}{2}$

Pipe Losses

Major Losses. $h_{\text{L Major}} = f \frac{l}{D} \frac{V^2}{2g}$

Colebrook Formula, $\frac{1}{\sqrt{f}} = -2.0 \log(\frac{\epsilon/D}{3.7} + \frac{2.51}{Re\sqrt{f}})$

Explicit alternative to Colebrook Formula, $\frac{1}{\sqrt{f}} = -1.8 \log[(\frac{\epsilon/D}{3.7})^{1.11} + \frac{6.9}{Re}]$

Minor Losses, $h_{\text{L Minor}} = K_L \frac{V^2}{2g}$

 $\epsilon = \text{Pipe Equivalent Roughness}$

SEMESTER / SESSION : SEMESTER II / 2022/2023

COURSE NAME : FLUID MECHANICS

PROGRAMME CODE : BBA / BBG

COURSE CODE : BBM 30103

Conversion Tables

	To Convert from	to	Multiply by
Acceleration	ft/s ²	m/s ²	3.048 E - 1
Area	ft ²	m^2	9.290 E - 2
Density	lbm/ft ³	kg/m ³	1.602 E + 1
	slugs/ft ³	kg/m ³	5.154 E + 2
Energy	Btu	J	1.055 E + 3
	ft · Ib	J	1.356
Force	lb	N	4.448
Length	ft	m	3.048 E - 1
	in.	m	2.540 E - 2
	mile	m	1.609 E + 3
Mass	lbm	kg	4.536 E - 1
	slug	kg	1.459 E + 1
Power	ft·lb/s	W	1.356
	hp	W	7.457 E + 2
Pressure	in. Hg (60 °F)	N/m^2	3.377 E + 3
	lb/ft ² (psf)	N/m^2	4.788 E + 1
	lb/in.2 (psi)	N/m^2	6.895 E + 3
Specific weight	lb/ft ³	N/m^3	1.571 E + 2
Temperature	°F	°C	$T_C = (5/9)(T_F - 32^\circ)$
	◦R	K	5.556 E - 1
Velocity	ft/s	m/s	3.048 E - 1
	mi/hr (mph)	m/s	4.470 E - 1
Viscosity (dynamic)	lb ⋅s/ft²	$N \cdot s/m^2$	4.788 E + 1
Viscosity (kinematic)	ft ² /s	m^2/s	9.290 E − 2
Volume flowrate	ft³/s	m^3/s	2.832 E - 2
	gal/min (gpm)	m^3/s	6.309 E - 5

CONFIDENTIAL

SEMESTER / SESSION : SEMESTER II / 2022/2023

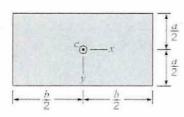
COURSE NAME : FLUID MECHANICS

PROGRAMME CODE : BBA / BBG

COURSE CODE : BBM 30103

Conversion Tables

	To Convert from	to	Multiply by
Acceleration	m/s ²	ft/s ²	3.281
Area	m^2	ft ²	1.076 E + 1
Density	kg/m ³	lbm/ft ³	6.243 E - 2
	kg/m ³	slugs/ft ³	1.940 E - 3
Energy	J	Btu	9.478 E - 4
	J	ft · lb	7.376 E - 1
Force	N	lb	2.248 E - 1
Length	m	ft	3.281
	m	in.	3.937 E + 1
	m	mile	6.214 E - 4
Mass	kg	lbm	2.205
	kg	slug	6.852 E - 2
Power	W	ft · lb/s	7.376 E - 1
	W	hp	1.341 E - 3
Pressure	N/m^2	in. Hg (60 °F)	2.961 E - 4
	N/m^2	lb/ft ² (psf)	2.089 E - 2
	N/m^2	lb/in.2 (psi)	1.450 E - 4
Specific weight	N/m^3	lb/ft ³	6.366 E - 3
Temperature	°C	°F	$T_F = 1.8 T_C + 32^\circ$
	K	°R	1.800
Velocity	m/s	ft/s	3.281
	m/s	mi/hr (mph)	2.237
Viscosity (dynamic)	$N \cdot s/m^2$	$lb \cdot s/ft^2$	2.089 E - 2
Viscosity (kinematic)	m^2/s	ft^2/s	1.076 E + 1
Volume flowrate	m^3/s	ft ³ /s	3.531 E + 1
	m^3/s	gal/min (gpm)	1.585 E + 4


COURSE NAME : FLUID MECHANICS

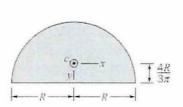
SEMESTER / SESSION: SEMESTER II / 2022/2023

PROGRAMME CODE : BBA / BBG

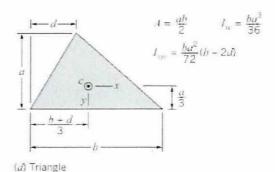
COURSE CODE : BBM 30103

Geometric Properties of Common Shapes

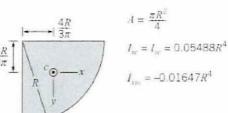
$$I_{x} = \frac{1}{12}ba^{3}$$

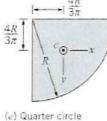

$$I_{yx} = \frac{1}{12}ab^{3}$$

$$I_{yz} = 0$$


$$I_{x_i} = I_{x_i} = \frac{\pi R^2}{4}$$

$$I_{x_i} = 0$$


(a) Rectangle



$$I_{cc} = 0.1098R^5$$
 $I_{cc} = 0.3927R^6$
 $I_{cc} = 0$

(a) Semicircle

TERBUKA

SEMESTER / SESSION : SEMESTER II / 2022/2023

COURSE NAME : FLUID MECHANICS

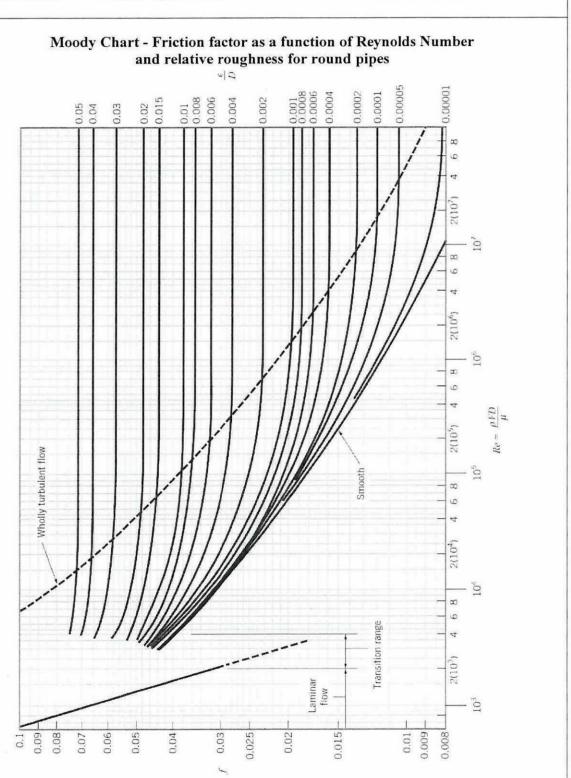
PROGRAMME CODE : BBA / BBG

COURSE CODE : BBM 30103

Dimension Associated with Common Physical Quantities

	FLT System	MLT System		FLT System	MLT System
Acceleration Angle Angular acceleration	LT^{-2} $F^{0}L^{0}T^{0}$ T^{-2}	LT^{-2} $M^0L^0T^0$ T^{-2}	Power Pressure Specific heat	FLT^{-1} FL^{-2} $L^{2}T^{-2}\Theta^{-1}$	$ML^{2}T^{-3}$ $ML^{-1}T^{-2}$ $L^{2}T^{-2}\Theta^{-1}$
Angular velocity Area	T^{-1} L^2	$\frac{T^{-1}}{L^2}$	Specific weight Strain	FL^{-3} $F^0L^0T^0$	$ML^{-2}T^{-2}$ $M^{0}L^{0}T^{0}$
Density Energy Force Frequency	FL ⁻⁴ T ² FL F T ⁻¹	ML ⁻³ ML ² T ⁻² MLT ⁻² T ⁻¹	Stress Surface tension Temperature	FL ⁻² FL ⁻¹ O	$ML^{-1}T^{-2}$ MT^{-2} Θ
Heat	FL	ML^2T^{-2}	Time	T	T , ,
Length Mass Modulus of elasticity Moment of a force	$L \\ FL^{-1}T^2 \\ FL^{-2} \\ FL$	L M $ML^{-1}T^{-2}$ $ML^{2}T^{-2}$	Torque Velocity Viscosity (dynamic) Viscosity (kinematic)	FL LT^{-1} $FL^{-2}T$ $L^{2}T^{-1}$	$ML^{2}T^{-2}$ LT^{-1} $ML^{-1}T^{-1}$ $L^{2}T^{-1}$
Moment of inertia (mass) Moment of inertia (mass) Momentum	FLT ² FT	$\frac{L^4}{ML^2}$ $\frac{ML^2}{MLT^{-1}}$	Volume Work	L³ FL	L^3 ML^2T^{-2}

Equivalent Roughness for New Pipes


	Equivalent Roughness, ε		
Pipe	Feet	Millimeters	
Riveted steel	0.003-0.03	0.9-9.0	
Concrete	0.001 - 0.01	0.3 - 3.0	
Wood stave	0.0006-0.003	0.18 - 0.9	
Cast iron	0.00085	0.26	
Galvanized iron	0.0005	0.15	
Commercial steel			
or wrought iron	0.00015	0.045	
Drawn tubing	0.000005	0.0015	
Plastic, glass	0.0 (smooth)	0.0 (smooth)	

SEMESTER / SESSION: SEMESTER II / 2022/2023

PROGRAMME CODE : BBA / BBG

COURSE NAME : FLUID MECHANICS COURSE CODE : BBM 30103

CONFIDENTIAL

TERBUKA

SEMESTER / SESSION : SEMESTER II / 2022/2023

COURSE NAME : FLUID MECHANICS

PROGRAMME CODE : BBA / BBG

COURSE CODE : BBM 30103

Loss Coefficient for Pipe Components

Component	K_L	
a. Elbows		
Regular 90°, flanged	0.3	
Regular 90°, threaded	1.5	
Long radius 90°, flanged	0.2	P
Long radius 90°, threaded	0.7	
Long radius 45°, flanged	0.2	
Regular 45°, threaded	0.4	-
b. 180° return bends		P
180° return bend, flanged	0.2	
180° return bend, threaded	1.5	
c. Tees		
Line flow, flanged	0.2	
Line flow, threaded	0.9	r.
Branch flow, flanged	1.0	
Branch flow, threaded	2.0	
d. Union, threaded	0.08	ν Η
*e. Valves		
Globe, fully open	10	
Angle, fully open	2	1.0
Gate, fully open	0.15	. 15
Gate, ½ closed	0.26	
Gate, $\frac{1}{2}$ closed	2.1	TO AND THE REAL PROPERTY.
Gate, $\frac{3}{4}$ closed	17	
Swing check, forward flow	2	V
Swing check, backward flow	90	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, whic
Ball valve, fully open	0.05	
Ball valve, $\frac{1}{3}$ closed	5.5	
Ball valve, ² / ₃ closed	210	

CONFIDENTIAL

