

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2022/2023**

COURSE NAME

ELECTRICAL AND ELECTRONICS

TECHNOLOGY

COURSE CODE

BDU 10803

PROGRAMME CODE :

BDM

EXAMINATION DATE :

JULY/AUGUST 2023

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE FINAL EXAMINATION CONDUCTED

VIA CLOSED BOOK.

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

PART A: Answer all questions.

		and wer win questions.											
Q1	(a)	State three (3) examples of passive components. (3 m	narks)										
	(b)	Define the term "supernode". (2 m	narks)										
	(c)	A circuit in Figure Q1(c) is supplied with 40 V voltage source. By transf arrangement of the resistors, find: (i) the equivalent resistance.											
			narks)										
		(iii) the power drain on the voltage source.	(2 marks)										
	(d)		narks)										
	(4)	Consider the circuit shown in Figure Q1(d) . By using mesh-current r determine: (i) the mesh currents.											
		NAME OF THE PROPERTY OF THE PR	(6 marks)										
		(iii) the voltage v_o across the 8Ω resistor.	narks)										
		(2 m	narks)										
Q2	(a)	State four (4) factors that can affect the value of inductance in a solenoid.											
	(b)	A circuit shown in Figure Q2(b) is connected to a 75 mA current source. E circuit and determine: (i) the Thevenin's voltage with respect to the terminals a,b.											
		(ii) the Norton's equivalent circuit with respect to the terminals a,b.											
		(5 m	narks)										
	(c)	A sinusoidal voltage is given by the expression $v = 300 \cos(120)$. Calculate:											
		(i) The period of the voltage in milliseconds.(ii) The frequency in hertz	narks)										
		Section 1997	arks)										
		(iv) The rms value of v	arks)										

TERBUKA

(2 marks)

Q3 (a) Analyze the logic circuit in **Figure Q3(a)** and derive the Boolean expression for the intermediate and the final outputs.

(7 marks)

(b) Construct a truth table for the Boolean expression in Q3(a).

(5 marks)

(c) Distinguish a single logic gate that can be applied to replace the entire circuit in **Figure Q3(a)**.

(2 marks)

- (d) Recontruct the combinational logic circuit in **Figure Q3(a)** using only NAND gate. (5 marks)
- (e) Draw a logic gate circuit for this function: $A\overline{B} + \overline{C}(A + B)$

(6 marks)

PART B: Answer one (1) question only.

Q4 (a) A bar magnet has two poles. Sketch the magnetic field pattern around the bar magnet and explain what the flux lines represent.

(6 marks)

- (b) Discuss the difference between permanent magnet and electromagnet in terms of the following:
 - (i) production of magnetic field
 - (ii) strength of the magnetic field
 - (iii) control of the magnetic field

(6 marks)

(c) Describe two (2) ways to increase the strength of a magnetic field.

(4 marks)

(d) Draw the structure of a basic transformer and its symbol. Label the core, primary winding and secondary winding.

(5 marks)

(e) Differentiate the primary winding and the secondary winding of a transformer.

(4 marks)

Q5 (a) Differentiate generators and motors in terms of their energy conversion characteristics.

(2 marks)

(b) The basic parts of any DC machine are a stator and a rotor. Describe the behavior of each of them and what they are comprised of.

(6 marks)

(c) Explain three (3) advantages and disadvantages of a brushed DC motor.

(6 marks)

(d) Sketch the basic diode structure and symbol. Provide a proper labelling and explanation.

(5 marks)

(e) Describe three (3) types of diodes and their functions.

(6 marks)

- END OF QUESTIONS -

4

TERBUKA

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME

: ELECTRICAL AND ELECTRONIC

TECHNOLOGY

PROGRAMME CODE: BDM COURSE CODE: BDU10803

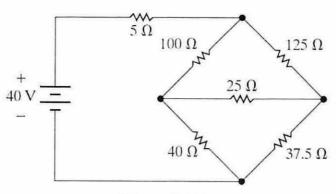
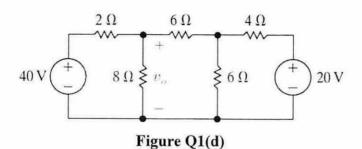
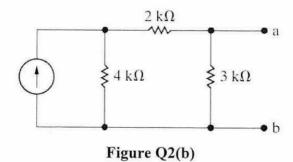
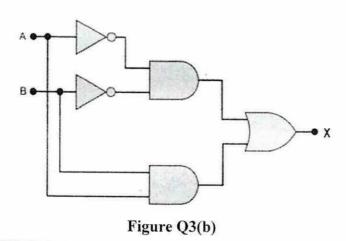





Figure Q1(c)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME

: ELECTRICAL AND ELECTRONIC

TECHNOLOGY

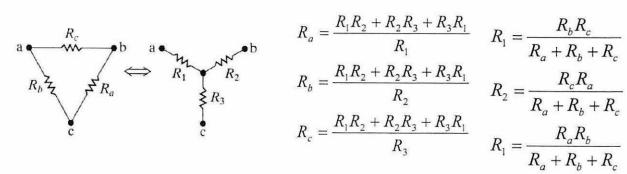
PROGRAMME CODE: BDM COURSE CODE: BDU10803

LIST OF FORMULA

OHMS LAW

$$V = IR$$

JOULE'S LAW


$$P = IV$$

KIRCHHOFF LAW

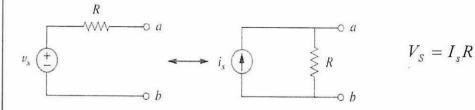
$$\sum_{k=1}^{n} i_k = 0$$

$$\sum_{v=1}^{n} v_k = 0$$

WYE-DELTA TRANSFORMATION

$$R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}$$

$$R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$$


$$R_{c} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$$

$$R_1 = \frac{R_a + R_b + R_c}{R_a + R_b + R_c}$$

$$R_2 = \frac{R_c R_a}{R_a + R_b + R_c}$$

$$R_1 = \frac{R_a R_b}{R_a + R_b + R_c}$$

SOURCE TRANSFORMATION

$$V_{S} = I_{s}R$$

THEVENIN AND NORTON EQUIVALENT CIRCUIT

$$R_{TH} = R_N$$

$$I_N = \frac{V_{TH}}{R_{TH}}$$

$$P = i^2 R_L = \left(\frac{V_{TH}}{R_{TH} + R_L}\right)^2 R_L \qquad \text{When } R_L \neq R_{TH}$$

When
$$R_L \neq R_{TH}$$

$$P_{\text{max}} = \frac{{V_{TH}}^2}{4R_{TH}}$$

When
$$R_L = R_{TH}$$

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2022/2023

: ELECTRICAL AND ELECTRONIC

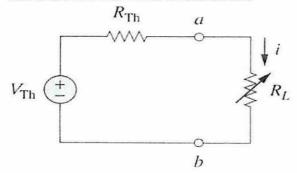
TECHNOLOGY

PROGRAMME CODE: BDM COURSE CODE: BDU10803

THEVENIN AND NORTON EQUIVALENT CIRCUIT

$$R_{TH} = R_N$$

$$I_N = \frac{V_{TH}}{R_{TH}}$$


$$P = i^2 R_L = \left(\frac{V_{TH}}{R_{TH} + R_L}\right)^2 R_L \qquad \text{When } R_L \neq R_{TH}$$

When
$$R_L \neq R_{TH}$$

$$P_{\text{max}} = \frac{V_{TH}^2}{4R_{TH}}$$

When
$$R_L = R_{TH}$$

MAXIMUM POWER TRANSFER

$$P = i^2 R_L = \left(\frac{V_{\text{TH}}}{R_{\text{TH}} + R_L}\right)^2 R_L$$

CAPACITOR AND INDUCTOR

$$C = \frac{\varepsilon A}{d}$$

$$i = C\frac{dv}{dt}$$

$$L = \frac{N^2 \mu A}{I}$$

$$i = \frac{1}{L} \int_{t_0}^{t} v(t) dt + i(t_0)$$

$$\tau = RC$$

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(t)dt + v(t_0)$$

$$w = \frac{1}{2}Cv^2$$

$$v = L \frac{di}{dt}$$

$$w = \frac{1}{2}Li^2$$

$$\tau = \frac{L}{R}$$

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME

: ELECTRICAL AND ELECTRONIC

TECHNOLOGY

PROGRAMME CODE: BDM COURSE CODE: BDU10803

PHASOR RELATIONSHIP

$$v(t+T) = v(t)$$

$$f = \frac{1}{T}$$

$$z = x + jy = r \angle \phi = r(\cos \phi + j \sin \phi)$$

ALTERNATING CURRENT POWER CALCULATION

$$P(t) = v(t)i(t)$$

Instantaneous power

$$P = \frac{1}{2} \operatorname{Re}[VI^*] = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

Average power

$$i_{RMS} = \sqrt{\frac{1}{T} \int_0^T i^2 dt}$$

$$P_{RMS} = I_{RMS}^{2} R = \frac{{V_{RMS}}^{2}}{R}$$

TRANSFORMERS

$$\frac{V_P}{V_S} = \frac{N_P}{N_S}$$

LOGIC GATES

Name	NOT Ā		AND AB			NAND AB			OR A+B						XOR			XNOR A⊕B		
Alg. Expr.																				
Symbol			<u>A</u> <u>B</u> <u>x</u>																	
Truth	A	X	В	A	X	В	A	X	В	A	X	В	A	X	В	A	X	В	A	X
Table	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1
	1	0	0	1	0	0	1	1	0	1	1	0	1	0	0	1	1	0	1	
		*	1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	1	0	
			1	1	1	1	1	0	1	1	1	1	1	0	1	1	0	1	1	