

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

FLUID MECHANICS

COURSE CODE

BDU 11403

PROGRAMME CODE :

BDM

:

EXAMINATION DATE :

JULY / AUGUST 2023

DURATION

3 HOURS

INSTRUCTION

1. ANSWER **FOUR (4)** QUESTIONS

ONLY.

2. THIS FINAL EXAMINATION IS CONDUCTED VIA **CLOSED BOOK**.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED BOOK.

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

to provide the second s

ANSWER FOUR (4) QUESTIONS ONLY.

Q1 (a) Provide an explanation	n on	the following:
-------------------------------	------	----------------

(i) Fluid statics

(1 marks)

(ii) Cohesive Forces with one example

(2 marks)

(iii) Adhesive Forces with one example

(2 marks)

- (b) A glass tube is inserted into water at 40°C as shown in **Figure Q1** (b) and the physical properties of water are shown in **Table Q1** (b). If contact angle of water with a glass surface is 0° and the water surface tension, σ is 0.0696 N/m.
 - (i) Examine and plot the height, h of the water as a function of the tube's inner diameter D for $0.5 \text{ mm} \le D \le 3 \text{ mm}$. Use increments of 0.5 mm. (16 marks)
 - (ii) Based on the plot in Q1 (b)(i), explain the relation between height and diameter of the glass tube.

(4 marks)

Q2 (a) A hydrometer is used to measure the specific gravity of the liquid. For the certain liquid, a hydrometer reading indicates a specific gravity of 1.15. Determine the density and specific weight of that liquid.

(5 marks)

- (b) A piston that having a cross-sectional area of 0.07 m² is located in a cylinder containing water. An open U-tube manometer is connected to the cylinder as shown in **Figure Q2** (b). The weight of the piston is negligible.
 - (i) Examine the force, P acting on the piston. Take $h_1 = 60$ mm, h = 100 mm and density of the mercury is 13600 kg/m³.

(16 marks)

(ii) Compare your answer, if the mercury is changed to water, will the similar answer of the force, P as Q2(b)(i) is obtained. Take the same value of h_1 and h.

(4 marks)

Q3 (a) Provide an explanation on the following:

(i) Density

(1 marks)

(ii) Bernoulli's Principle

(2 marks)

2

CONFIDENTIAL

(b) As a designer, you are requested to choose the suitable width of the overhang sea wall along ABC which are 2 m and 5 m wide as shown in Figure Q3(b). Compare the resultant force that water exerts on the overhang sea wall if the wall is 2 m and 5 m wide.

(22 marks)

Q4 (a) As shown in **Figure Q4** (a), water flows out of faucet at *A* at 6m/s. Determine the velocity of the water just before it strikes the ground surface at *B*.

(5 marks)

- (b) The uniform 5 m long wooden rod in **Figure Q4 (b)** is tied to the bottom by string. The wooden rode is in equilibrium under the action of weight and buoyant forces. The physical properties of water are shown in **Table Q4 (b)**.
 - (i) Analyse the string tension.

(15 marks)

(ii) Determine the specific gravity of the wood.

(3 marks)

(iii) Determine the inclination angle, θ .

(2 marks)

Q5 (a) At cruise conditions of Airbus A380, air flows into a Rolls-Royce Trent 900 turbofan engine (**Figure Q5(a)**) at a steady rate of 27.22 kg/s. Fuel enters the engine at a steady rate of 0.27 kg/s. The average velocity of the exhaust gases is 452.2 m/s relative to the engine. If the engine exhaust effective cross section area is 0.325 m², determine the density of the exhaust gases in kg/m³.

(8 marks)

(b) A free jet of fluid strikes a wedge of the total flow, a portion is deflected 30°; the remainder is not deflected as shown in **Figure Q5(b)**. The horizontal and vertical components of force needed to hold the wedge stationary are F_H and F_V, respectively. Gravity is negligible and the fluid speed remains constants. Analyse the force ratio, F_H/F_V.

(17 marks)

- END OF QUESTIONS -

3

CONFIDENTIAL

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME

: FLUID MECHANICS

PROGRAMME CODE: BDM

COURSE CODE : BDU 11403

Figure Q1(b)

Table Q1(b)

Temperature T (°C)	Density $\rho (kg/m^3)$	Dynamic Viscosity $\mu (N \cdot s/m^2)$	Kinematic Viscosity $\nu (m^2/s)$	Vapor Pressure p_v (kPa)	
0	999.8	$1.80(10^{-3})$	1.80(10-6)	0.681	
5	1000.0	$1.52(10^{-3})$	$1.52(10^{-6})$	0.872	
10		$1.31(10^{-3})$ $1.31(10^{-6})$	99.7 $1.31(10^{-3})$ $1.31(10^{-6})$	$1.31(10^{-3})$ $1.31(10^{-6})$	1.23
15		$1.15(10^{-3})$	$1.15(10^{-3})$ $1.15(10^{-6})$	1.71	
20	998.3	$1.00(10^{-3})$	$1.00(10^{-6})$	2.34	
25	997.1	$0.897(10^{-3})$	$0.898(10^{-6})$	3.17	
30	995.7	$0.801(10^{-3})$	$0.804(10^{-6})$	4.25	
35	994.0	$0.723(10^{-3})$	$0.727(10^{-6})$	5.63	
40	992.3	$0.659(10^{-3})$	$0.664(10^{-6})$	7.38	
45	990.2	$0.599(10^{-3})$	$0.604(10^{-6})$	9.59	
50	988.0	$0.554(10^{-3})$	$0.561(10^{-6})$	12.4	

SEMESTER / SESSION : SEM II / 2022/2023 COURSE NAME

: FLUID MECHANICS

PROGRAMME CODE: BDM

COURSE CODE : BDU 11403

Figure Q2(b)

Figure Q4 (a)

5

CONFIDENTIAL

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME

: FLUID MECHANICS

PROGRAMME CODE: BDM

COURSE CODE : BDU 11403

Figure Q4 (b)

Table Q4(b)

Temperature T (°C)	Density ρ (kg/m ³)	Dynamic Viscosity $\mu (N \cdot s/m^2)$	Kinematic Viscosity $\nu \text{ (m}^2/\text{s)}$	Vapor Pressure p_v (kPa)
0	999.8	$1.80(10^{-3})$	1.80(10-6)	0.681
5	1000.0	$1.52(10^{-3})$	$1.52(10^{-6})$	0.872
10	999.7	$1.31(10^{-3})$	$1.31(10^{-6})$	1.23
15	999.2	$1.15(10^{-3})$	$1.15(10^{-6})$	1.71
20	998.3	$1.00(10^{-3})$	$1.00(10^{-6})$	2.34
25	997.1	$0.897(10^{-3})$	$0.898(10^{-6})$	3.17
30	995.7	$0.801(10^{-3})$	$0.804(10^{-6})$	4.25
35	994.0	$0.723(10^{-3})$	$0.727(10^{-6})$ 5.6.	
40	992.3	$0.659(10^{-3})$	$0.664(10^{-6})$	7.38
45	990.2	$0.599(10^{-3})$	$0.604(10^{-6})$	9.59
50	988.0	$0.554(10^{-3})$	$0.561(10^{-6})$	12.4

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME : FLUID MECHANICS

PROGRAMME CODE: BDM

COURSE CODE : BDU 11403

Figure Q5(a)

Figure Q5(b)

The Control of the second seco

