

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2014/2015**

COURSE NAME : CIRCUIT THEORY

COURSE CODE : DAE 11103

PROGRAMME

: 1 DAE

EXAMINATION DATE : JUNE 2015 / JULY 2015

DURATION

: 3 HOURS

INSTRUCTION

: PART A

ANSWER ALL QUESTIONS

PART B

ANSWER TWO (2) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

CONFIDENTIAL

DAE 11103

PART A

Q1 (a) Determine the current flowing through an element if the charge flow is given by

 $q(t) = (3e^{-t} - 5e^{-2t}) \, nC$

(4 marks)

(b) Find the charge q(t) flowing through a device if the current is

 $i(t) = 10e^{-30t} \sin 40t A, \qquad q(0) = 0$

= 0 (6 marks)

(c) If $R_{eq} = 50 \Omega$ in the circuit of **Figure Q1(c)**, find R.

(10 marks)

Q2 (a) In the circuit of Figure Q2(a), find the voltage V_o using nodal analysis.

(10 marks)

(b) In the circuit of Figure Q2(b), find the voltage V_x using mesh analysis.

(10 marks)

Q3 (a) Use source transformations to reduce the circuit in Figure Q3(a) to a single voltage source in series with a single resistor.

(6 marks)

(b) Find the Thevenin equivalent circuit at the terminal a-b shown in **Figure** Q3(b).

(6 marks)

(c) Find V_0 in the circuit of **Figure Q3(c)** using Norton's theorem.

(8 marks)

PART B

Q4 (a) Define the meaning of time constant, τ with the aid of appropriate graph.

(4 marks)

(b) Determine the equivalent capacitance, C_{eq} seen from terminal a-b in Figure Q4(b).

(4 marks)

- (c) The switch in the circuit shown in **Figure Q4(c)** has been closed for a long time and is opened at t = 0. Find
 - (i) the initial value of v(t)
 - (ii) the time constant for t > 0
 - (iii) the numerical expression for v(t) after the switch has been opened
 - (iv) the initial energy stored in the capacitor, w_c (0).

(12 marks)

Q5 (a) Suppose that the ac line voltage powering a computer has an rms value of 110 V, a frequency of 60 Hz, and the peak voltage is attained at t = 5ms. Write an expression for this ac voltage as a function of time.

(4 marks)

(b) Suppose that

$$v_1(t) = 20 \cos (\omega t - 45^\circ)$$

 $v_2(t) = 10 \sin (\omega t + 60^\circ)$

Reduce the sum $v_s(t) = v_1(t) + v_2(t)$ to a single trigonometric function.

(6 marks)

(c) Consider the circuit shown in **Figure Q5(c)**. Find the voltage $v_C(t)$ in steady state condition. Find the phasor current through each element.

(10 marks)

- Q6 (a) A 110 V rms, 60 Hz source is applied to a load impedance Z. The apparent power entering the load is 120 VA at a power factor of 0.707 lagging.
 - (i) Calculate the complex power.
 - (ii) Find the rms current supplied to the load.
 - (iii) Determine Z.
 - (iv) Assuming that $Z = R + i\omega L$, find the values of R and L.

(12 marks)

(b) A 50 kW load operates from a 60 Hz 10 kV $_{rms}$ line with a power factor of 60% lagging. Compute the capacitance that must be placed in parallel with the load to achieve a 90% lagging power factor.

(8 marks)

- END OF QUESTION -

SEMESTER/SESSION: SEM II/2014/2015 COURSE NAME : CIRCUIT THEORY PROGRAMME: 1 DAE COURSE CODE: DAE 11103

FIGURE Q1(c)

FIGURE Q2(a)

SEMESTER/SESSION: SEM II/2014/2015 COURSE NAME : CIRCUIT THEORY PROGRAMME: 1 DAE COURSE CODE: DAE 11103

FIGURE Q2(b)

FIGURE Q3(a)

SEMESTER/SESSION: SEM II/2014/2015 COURSE NAME : CIRCUIT THEORY PROGRAMME: 1 DAE COURSE CODE: DAE 11103

FIGURE Q3(b)

FIGURE Q3(c)

FIGURE Q4(b)

SEMESTER/SESSION: SEM II/2014/2015 COURSE NAME : CIRCUIT THEORY PROGRAMME: 1 DAE COURSE CODE: DAE 11103

FIGURE Q4(c)

FIGURE Q5(c)