

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2023/2024

COURSE NAME

SIGNAL AND SYSTEM

COURSE CODE

BNF 36002

PROGRAMME CODE :

BNF

EXAMINATION DATE :

JULY 2024

DURATION

2 HOURS 30 MINUTES

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS

CONDUCTED VIA

☐ Open book

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION

CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

- Q1 (a) Consider the following continuous signals and determine whether they are power signal or energy signal:
 - (i) $x_1(t) = e^{-2t} u(t)$

(3 marks)

(ii)
$$x_2(t) = 5 e^{(j(2\frac{\pi}{9})t)}$$

(3 marks)

(iii)
$$x_3(t) = 4 \sin(6\pi t)$$

(3 marks)

(b) A discrete-time signal is shown in **Figure Q1.1**. Sketch and label carefully each of the following signals:

(i)
$$x[3n-3]$$

(3 marks)

(ii)
$$x[n] u[4+n]$$

(3 marks)

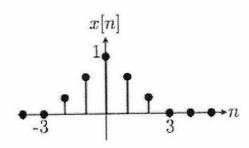


Figure Q1.1

(c) Determine whether each of the following signals is periodic. If a signal is periodic, specify its fundamental period.

(i)
$$x(t) = je^{j10t}$$

(4 marks)

(ii)
$$g(t) = 3 \sin(4\pi t) + 7 \cos(3\pi t)$$

(6 marks)

Q2 (a) Compute and plot the convolution $y(t) = x(t) * \Box(t)$, where.

$$x(t) = e^{-4t} [u(t) - u(t-2)]$$
and $h(t) = e^{-2t} u(t)$

(10 marks)

(5 marks)

- (b) Consider and check the linearity of the following two systems S_1 and S_2 .
 - (i) $y(t) = x(t^2)$
 - (ii) $y(t) = \sin t \cdot x(t)$
 - (iii) y(t) = 2+x(t) (5 marks)
- Q3 (a) Compute the coefficients *ak* using Fourier series analysis equation for the continuous-time periodic signal

$$x(x) = \begin{cases} 1.5, & 0 \le t < 2 \\ -2.5, & 2 \le t < 3 \end{cases}$$

(7 marks)

- (b) Use the Fourier transform analysis to calculate the Fourier transforms of the following signal. Then, sketch and label the magnitude of each Fourier transform
 - (i) $e^{-2}(t-1)u(-t-1)$

(5 marks)

(ii) $\delta(t+1) + \delta(t-1)$

(5 marks)

- (c) Use the Fourier transform synthesis equation to determine the inverse Fourier transforms of:
 - (i) $X_1(j\omega) = 2\pi\delta(\omega) + \pi\delta(\omega 2\pi) + \pi\delta(\omega + 2\pi)$

(4 marks)

(ii)
$$x_2(jw) = \begin{cases} 2 & 0 \le w \le 2 \\ -2, & -2 \le w \le 0 \\ 0 & |w| > 2 \end{cases}$$

(4 marks)

Q4 (a) Using the definition of Laplace transform, determine the Laplace transform of $f(t) = (\cos(2t) - e^{-2t})(t-2)$.

(6 marks)

(b) Demonstrate the inverse Laplace transform of

$$F(s) = \frac{s^2 + 12}{s(s+2)(s+3)}$$

(7 marks)

(c) The system function of a causal LTI system is

$$H(s) = \frac{s+1}{s^2+2s+2}$$

Determine and sketch the response y(t) when the input is

$$X(t) = e^{-|t|}, -\infty < t < \infty$$

(12 marks)

- END OF QUESTIONS -