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Q1 Answer the following questions.

(a) Solve the following first-order homogeneous differential equations:

g dy _ xy+y?
M) dx  xy-x2
(5 marks)
(i) (2y+x)dy=(4y —x)dx.
(5 marks)
(b) Solve the following first-order differential equations:
dy e
x— + 2y = sin x.
(5 marks)
(c) Given an ordinary differential equation:
(2x + ye*¥)dx + (cosy + xe*¥)dy = 0.
(i) Show that the given equation is exact.
(3 marks)
(i)  Hence, solve the exact equation.
(7 marks)

Q2  Answer the following questions.

(a) Determine the solution of the nonhomogeneous second-order differential
equations by using the undetermined coefficients method.

y"— 7y' +6y = 36x, y(©0) =0, y'(0) =4
(10 marks)

(b) Determine the solution for the given differential equation by using the variation
of parameters method.

y" — 2y" + 2y = e*(1 + sinx).
(15 marks)
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Q3

Q4

Answer the following questions.

(a) Determine the Laplace transform for each of the following functions:
G Fif)= t%e®.
(5 marks)
(iiy  f(t) = sin3t.cos 5t.
Hint: {2sinx.cos y = sin(x + y) + sin(x — y)}
(5 marks)
(i) f(&) = (t+ D
(5 marks)
(b)  Determine the inverse Laplace transform for each of the following functions:
. 35+8
(]) f(S) - s24+4 0
(5 marks)
- 1
(“) f(s) = s2(52+4) .
(5 marks)

Answer the following questions.

(a)  Given the initial-value problem (IVP), y' = yT;" . y(0.4) = 1.
Use Euler’s method to obtain an approximate for y when x = 1.4, using a step
sizeof h = 0.2.

(10 marks)

(b) Consider the following initial-value problem (IVP),

y =22+, y(0) = 0.8.

Solve for 0 < x < 0.8, and h = 0.4 by using the fourth-order Runge-Kutta
method.

(15 marks)

- END OF QUESTIONS -
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APPENDIX A
FORMULA

Second-order Differential Equation

The roots of the characteristic equation and the general solution for the differential equation
ay" +by' +cy=0

Characteristic equation: am’ +bm +c =0.

Case | The roots of characteristic equation General solution
1. | Real and different roots: ~ m, and m, y =Ae™ + Be™
2. | Real and equal roots: m=m, =m, y=(A+ Bx)e™
3. | Complexroots:m, =a+ i, m, =a— fi y=e"(Acos fx + Bsin fx)

The method of undetermined coefficients

For non-homogeneous second-order differential equation ay” + by’ + cy = f(x)
the particular solution is given by y, (x):

S () Y, (%)
P(x)=Ax"+4 x""+-+A4x+4, |xBx"+B_x""++Bx+B)
Ce™ x'(Pe™)
Ccos fx or Csin fx x"(Pcos fx+ Qsin fx)
P (x)e™ ¥ (Bx"+B, x""+---+Bx+B,)e"
P ) [cos fx ¥ (Bx"+B, x""+---+ Bx+B,)cos fx+
¥ ISil‘l Px AM(C X" +C, x4+ Cx+ C,)sin px
Ce” {C,OS hx x'e™ (P cos fix + Osin fx)
sin fAx
x| 05 5% X' (Bx"+B, _x""'+--+Bx+B,)e™ cos fx+
o {sin P X (Cx" +C, X" 4+ Cx+ C,)e™ sin fx

Note : 7 is the least non-negative integer (r = 0, 1, or 2) which determines such that there are
no terms in particular integral y, (x) corresponds to the complementary function y. {(x):

The method of variation of parameters

If the solution of the homogeneous equation ay’ + by’ + cy = 0 isy. = Ay, + By,, then
the particular solution for ay’”” + by" + cy = f(x) is y = uy; + vy,

[ Yf®) __ nf®) L '
Where u = f—aw dx+A, v=—] e dx+B,andW—|yi yél—ylyz V211

4 CONFIDENTIAL

TERBUKA




CONFIDENTIAL BDJ 12303

Laplace Transform
LU= [ f)e™dr = F(s)
o — F(s) | G Fes) |
- = | H(r -a) e
5 | Y
& 1 | flr—a)H(r—a) e F(s)
§—a ‘
\
sinar = = - ‘ o(r—a) o
5™ +a |
) ‘k " > —_pr
cosar = : = '\ f(no(r—a) e f(a)
S g~ i
smhar = = = U |( Flng(r—u)du F(s5)-G(s)
i | =¥
4 ‘ )
coshar : £ = !\ (1) Y(s)
§= —= |
n! | ; B} )
* =123 — i ¥ sT(s)—1(0)
5 |
e” (1) F(&—a) | ¥ () | $T(s) = sp(0) = 27(0)
1" F ()., =123 (-1) LF(.S) W
ds _

Euler’s method

Yis1 = ¥i + hy] = yi + hf (x;, 3:)

Fourth-order Runge-Kutta method

i
Y1 =¥+ p (ks + 2k + 2k3 + ky)

ky
2 ’

s h
Which kg = hf (xp, ), ke =hf(i+5,yi+

ks = hf (i +3, 9+ 2, ks = Bf (i + b, yi + k3).
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