

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2023/2024

COURSE NAME

MATHEMATICS FOR ENGINEERING

TECHNOLOGY II

COURSE CODE

BDJ 12303

PROGRAMME CODE

BDJ

EXAMINATION DATE :

JULY 2024

DURATION

3 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS

CONDUCTED VIA

☐ Open book

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES

DURING THE EXAMINATION

CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

- Answer the following questions. Q1
 - Solve the following first-order homogeneous differential equations: (a)
 - (i) $\frac{dy}{dx} = \frac{xy + y^2}{xy x^2} .$

(5 marks)

(ii) (2y + x)dy = (4y - x)dx.

(5 marks)

Solve the following first-order differential equations: (b)

$$x\frac{dy}{dx} + 2y = \sin x.$$

(5 marks)

Given an ordinary differential equation: (c)

$$(2x + ye^{xy})dx + (\cos y + xe^{xy})dy = 0.$$

(i) Show that the given equation is exact.

(3 marks)

(ii) Hence, solve the exact equation.

(7 marks)

- Q2Answer the following questions.
 - Determine the solution of the nonhomogeneous second-order differential (a) equations by using the undetermined coefficients method.

$$y'' - 7y' + 6y = 36x$$
, $y(0) = 0$, $y'(0) = 4$.

$$y(0) = 0, y'(0) = 4$$

(10 marks)

Determine the solution for the given differential equation by using the variation (b) of parameters method.

$$y'' - 2y' + 2y = e^x(1 + \sin x).$$

(15 marks)

- Q3 Answer the following questions.
 - (a) Determine the Laplace transform for each of the following functions:
 - (i) $f(t) = t^2 e^{3t}$.

(5 marks)

(ii) $f(t) = \sin 3t \cdot \cos 5t$.

Hint:
$$\{2\sin x \cdot \cos y = \sin(x+y) + \sin(x-y)\}\$$
 (5 marks)

(iii) $f(t) = (t+1)^3$.

(5 marks)

- (b) Determine the inverse Laplace transform for each of the following functions:
 - (i) $f(s) = \frac{3s+8}{s^2+4}$.

(5 marks)

(ii)
$$f(s) = \frac{1}{s^2(s^2+4)}$$
.

(5 marks)

- Q4 Answer the following questions.
 - (a) Given the initial-value problem (IVP), $y' = \frac{y+x}{xy}$, y(0.4) = 1. Use Euler's method to obtain an approximate for y when x = 1.4, using a step size of h = 0.2.

(10 marks)

(b) Consider the following initial-value problem (IVP),

$$y' = \sqrt{x^2 + y},$$
 $y(0) = 0.8.$

Solve for $0 \le x \le 0.8$, and h = 0.4 by using the fourth-order Runge-Kutta method.

(15 marks)

- END OF QUESTIONS -

CONFIDENTIAL

TERBUKA

APPENDIX A

FORMULA

Second-order Differential Equation

The roots of the characteristic equation and the general solution for the differential equation ay'' + by' + cy = 0

Chara	cteristic equation: $am^2 + bm + c = 0$.		
Case	The roots of characteristic equation	General solution	
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$	
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$	
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A\cos\beta x + B\sin\beta x)$	

The method of undetermined coefficients

For non-homogeneous second-order differential equation ay'' + by' + cy = f(x) the particular solution is given by $y_n(x)$:

f(x)	$y_p(x)$		
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})$		
$Ce^{\alpha x}$	$x^r(Pe^{\alpha x})$		
$C\cos\beta x$ or $C\sin\beta x$	$x^r(P\cos\beta x + Q\sin\beta x)$		
$P_n(x)e^{\alpha x}$	$x^{r}(B_{n}x^{n}+B_{n-1}x^{n-1}+\cdots+B_{1}x+B_{0})e^{\alpha x}$		
$R(x) \left[\cos \beta x\right]$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})\cos\beta x +$		
$P_n(x) \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^{r}(C_{n}x^{n} + C_{n-1}x^{n-1} + \dots + C_{1}x + C_{0})\sin \beta x$		
$Ce^{\alpha x}\begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^r e^{\alpha x} (P\cos\beta x + Q\sin\beta x)$		
$B \left(- \right) \propto \left[\cos \beta x \right]$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}\cos\beta x +$		
$P_n(x)e^{\alpha x}\begin{cases} \cos \beta x\\ \sin \beta x\end{cases}$	$x^{r}(C_{n}x^{n} + C_{n-1}x^{n-1} + \dots + C_{1}x + C_{0})e^{\alpha x}\sin\beta x$		

Note: r is the least non-negative integer (r = 0, 1, or 2) which determines such that there are no terms in particular integral $y_p(x)$ corresponds to the complementary function $y_c(x)$.

The method of variation of parameters

If the solution of the homogeneous equation ay'' + by' + cy = 0 is $y_c = Ay_1 + By_2$, then the particular solution for ay'' + by' + cy = f(x) is $y = uy_1 + vy_2$

Where
$$u = -\int \frac{y_2 f(x)}{aW} dx + A$$
, $v = -\int \frac{y_1 f(x)}{aW} dx + B$, and $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_{21} y_1'$

CONFIDENTIAL

Laplace Transform

$\mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt = F(s)$					
f(t)	F(s)	f(t)	F(s)		
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$		
e^{at}	$\frac{1}{s-a}$	f(t-a)H(t-a)	$e^{-as}F(s)$		
sin at	$\frac{a}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}		
cosat	$\frac{s^2 + a^2}{s}$ $\frac{s}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$		
sinh at	$\frac{a}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s)\cdot G(s)$		
cosh at	$\frac{s}{s^2 - a^2}$	y(t)	Y(s)		
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	y'(t)	sY(s)-y(0)		
$e^{at}f(t)$	F(s-a)	y''(t)	$s^2Y(s) - sy(0) - y'(0)$		
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$				

Euler's method

$$y_{i+1} = y_i + hy'_i = y_i + hf(x_i, y_i)$$

Fourth-order Runge-Kutta method

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
 Which
$$k_1 = hf(x_i, y_i), \quad k_2 = hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}),$$

$$k_3 = hf(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}), \quad k_4 = hf(x_i + h, y_i + k_3).$$