

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2023/2024**

COURSE NAME

STRUCTURAL ANALYSIS

COURSE CODE

BPD 20403

PROGRAMME CODE

BPC

EXAMINATION DATE : JULY 2024

DURATION

3 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS **EXAMINATION** FINAL IS

CONDUCTED VIA

☐ Open book

3. STUDENTS ARE PROHIBITED TO CONSULT THEIR OWN MATERIAL

OR ANY EXTERNAL RESOURCES

DURING THE

EXAMINATION

CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

TERBUKA

Q1 A plane truss as shown in **Figure Q1** is supported with a pin and roller at points A and B. The point loads imposed are 10 kN at point D and 10 kN at point F.

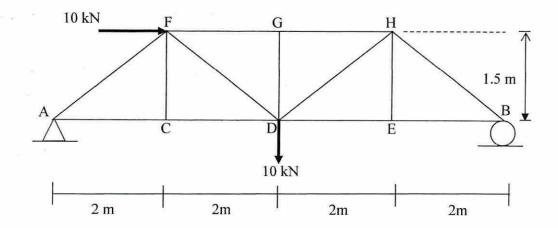


Figure Q1: Plane Truss

(a) Calculate the reaction forces at points A and B.

(6 marks)

(b) Calculate the internal forces of member GH, HE, and DE by using the method of section.

(14 marks)

Q2 A three-member frame as shown in **Figure Q2** is loaded with uniform distributed loads of 15 kN/m at points A to B and 30 kN/m at points B to C. The frame is pinned support at point A and roller support at point D.

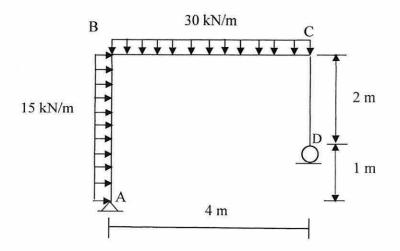


Figure Q2: A Three-Member Frame

(a) Identify the stability of the three-member frame.

(5 marks)

(b) Calculate the reaction forces at points A and D.

(15 marks)

Q3 A simply supported beam as shown in **Figure Q3** is subjected to point loads of 10 kN and 7 kN at points C and D. There is a uniform distributed load (UDL) of 4 kN/m imposed on the beam from points C to D. Given the value of elastic modulus, $E = 200 \text{ kN/mm}^2$ and moment inertia, $I = 10^8 \text{ mm}^4$.

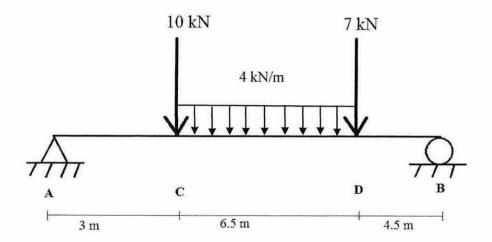


Figure Q3: A Simply Supported Beam

(a) Calculate the reaction forces at points A and B.

(6 marks)

(b) Calculate the deflection at points C and D using the Macaulay Method.

(14 marks)

TERBUKA

A plane truss as shown in **Figure Q4** is supported with pin and roller at point A and D respectively. The point loads imposed are 12 kN and 24 kN at point B and 18 kN at point C.

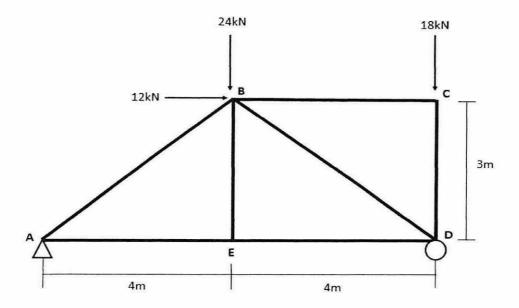


Figure Q4: Plane Truss

(a) Identify the stability of the plane truss.

(5 marks)

(b) Calculate the internal forces of each member by using the method of joint.

(15 marks)

Q5 A beam as shown in **Figure Q5** is loaded with 50 kN/m uniformed distributed load at points A to B and 20 kN concentrated load at point C. The beam is supported at point A and point D.

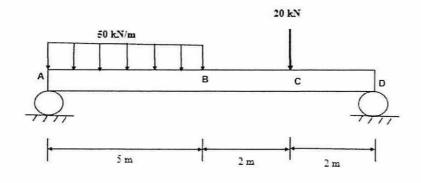


Figure Q5: Simply Supported Beam

4

CONFIDENTIAL

With the market being a district

mendani net. 13. Sarahan halipalenta neta ja 13.

(a) Calculate the reaction forces at points A and D.

(6 marks)

(b) Analyse the Shear Force Diagram (SFD) and Bending Moment Diagram (BMD) at points A, B, C, and D.

(14 marks)

- END OF QUESTIONS -

CONFIDENTIAL

