

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2018/2019

COURSE NAME

: MASS AND ENERGY BALANCE

COURSE CODE

DAK 12903

PROGRAMME CODE

: DAK

:

EXAMINATION DATE :

DECEMBER 2018 / JANUARY 2019

DURATION

3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY

TERBUKA

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

Q1	(a)	(i)	State four (4) basic dimensions of units.	
				(4 marks)
		(ii)	Explain two (2) benefits of attaching units with the numbers.	(4 marks)
	(b)	Expre	ss the dimensions for the parameters below using the symbol of M, L	and T.
		(i) (ii) (iii) (iv)	Speed Acceleration Force Pressure	
				(8 marks)
	(c)	Conve	ert the values below into their equivalent SI units.	
		(i) (ii)	57 lbm.ft/min ² . 1 gram/cm ³ .	
				(4 marks)
Q2	(a)	List fo	ur (4) general separation techniques.	
				(8 marks)
	(b)	Explair	n the differences between energy-separating agent and mass-separating	ng agent. (4 marks)
	(c)	State w	whether the statements below is true or false.	
			There are total of five types of general separation techniques. Separation using a solid agent can be done via absorption process. Distillation is preferred when the differences of volatility among the components in are not sufficiently large.	
		(iv)	Electrical force field is also considered as one of a separating agent.	

(8 marks)

Q3 (a) State two (2) purpose of constructing a mass balance diagram.

(4 marks)

- (b) Candy production started when a flavored sugar solution is initially dried using a single evaporator (E), and followed by two crystallizers (C₁ and C₂). The process starts when 3000 kg/h of feed solution (F) containing 20 wt% sugar is fed to an evaporator, which evaporates some water at 453K to produce 63 wt% of sugar solution. This solution is then fed to the first crystallizer (C₁) at 297K, where candy containing 73 wt% sugar is produced. In this first crystallizer, saturated solution containing 30 wt% sugar is recycled back to the evaporator. Next, the candy is fed to the second crystallizer (C₂) where candy containing 93 wt% sugar is produced. In this second crystallizer, saturated solution containing 30 wt% sugar is recycled back to the first crystallizer.
 - (i) Sketch the mass balance diagram for the problem above.

(3 marks)

- (ii) Calculate the mass flowrate of the output in the second crystallizer, C₂ in kg/h. (4 marks)
- (iii) Calculate the mass flow rate of the exit stream in the evaporator, E in kg/h. (9 marks)

- Q4 (a) Define the following terms:
 - (i) Boundary.
 - (ii) Recycle stream.
 - (iii) Bypass stream.

(6 marks)

- (b) As an engineer, you are given the task to design a desalination plant that can supply 10,000 m³ of freshwater per month. The seawater contains 94.5 wt% water, 3.5 wt% salt and 2 wt% of ultrafine sand particles. At the first stage of desalination process, 100 % the ultrafine sand particles will be removed via multi-media filters. The filtered seawater containing only water and salt will then is pressurized up to 1000 psi to allow the water pass though the reverse osmosis membranes to produce clean water (H₂O). However, the reverse osmosis process only able to convert 45 wt% of the seawater into pure water, while the 55 wt% of unrecovered water will be discharged together with the salt.
 - (i) State the component A, B and C for this process.

(3 marks)

(ii) Draw the mass balance diagram for this process.

(4 marks)

(iii) Determine the mass flow rate for all streams involved in this process in kg/month.

(7 marks)

- Q5 (a) (i) Define ideal gas.
 - (ii) Define real gas.

(4 marks)

(b) Hexane (C₆H₁₄) at 535^oC and 15 atm flows into the reactor at a rate of 3300 kg/h. Calculate the volumetric flowrate of this stream by using the conversion from standard conditions.

(6 marks)

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O(g)$$

TERBUKA

- (c) Determine the specific heat of reaction for the equation above by using;
 - (i) Heat of formation.

(5 marks)

(ii) Heat of combustion.

(5 marks)

- Q6 (a) Define the terms below
 - (i) Latent heat.
 - (ii) Heat of fusion.
 - (iii) Heat of vaporization.

(6 marks)

- (b) A stream of n-pentane are been heating from -150° C until $+150^{\circ}$ C in the separator.
 - (i) Construct a hypothetical path for this process.

(6 marks)

(ii) Determine the power required for this process.

(8 marks)

- Q7 A 100 mol/s of benzene and toluene liquid at 50°C is partially condensed out of a gas stream containing 85 mole% of benzene. The top product containing 90 mole% benzene and the bottom product is 56 mol/s containing only toluene liquid. Both products are coming out at 350°C.
 - (a) Sketch the diagram for this process.

(6 marks)

(b) Determine the required heat cooling rate in kW.

(14 marks)

- END OF QUESTIONS -

TERBUKA

SEMESTER/SESSION: SEM I/ SESSION 2018/2019

COURSE NAME : MASS AND ENERGY BALANCE

PROGRAMME: DAK

COURSE CODE: DAK 12903

Formula

$$\begin{array}{c} 1 \text{ kg} = 2.20462 \text{ lbm} \\ 1 \text{ meter} = 3.28 \text{ ft} \\ 1 \text{ kg} = 1000 \text{ g} \\ 1 \text{ meter} = 100 \text{ cm} \\ P_s = 1 \text{ atm, } T_s = 273 \text{ K, V/n} = 22.415 \text{ L/mol} \\ \Delta H^o_{rxn} = \left[c\Delta H^o_f(\mathcal{C}) + d\Delta H^o_f(\mathcal{D}) \right] - \left[a\Delta H^o_f(\mathcal{A}) + b\Delta H^o_f(\mathcal{B}) \right] \\ \Delta H^o_{rxn} = \left[a\Delta H^o_f(\mathcal{A}) + b\Delta H^o_f(\mathcal{B}) \right] - \left[c\Delta H^o_f(\mathcal{C}) + d\Delta H^o_f(\mathcal{D}) \right] \end{array}$$

TERBUKA

SEMESTER/SESSION: SEM I/ SESSION 2018/2019

COURSE NAME : MASS AND ENERGY BALANCE

PROGRAMME: DAK

COURSE CODE: DAK 12903

Compound	Formula	Mol. Wt.	SG (20%4°)	$T_m({}^{\diamond}C)^h$	$\Delta \hat{H}_{\mathrm{m}}(T_{\mathrm{m}})^{c,j}$ kJ/mol	$T_{\mathfrak{b}}(^{n}C)^{d}$	$\Delta \hat{H_{ m v}}(T_{ m b})^{e_j}$ k J/m el	$T_{\varepsilon}(\mathbb{K})^{f}$	$P_c(atm)^g$	$(\Delta \hat{H}_I^\circ)^{t_I}$ k J /mol	$(\Delta \hat{H}_{\varepsilon}^{*})^{i,j}$ kJ/moj
Acetaldehyde Acetic acid	CH₃CHO CH₃COOH	44.05 60.05	0.783 ¹⁸⁷ 1.049	-123.7 16.6	12.09	20.2 118.2	25.1 24,39	461.0 594.8	57.1	-166.2(g) -486.18(l)	-1192.4(g) -871.69(1
Acctone	C_3H_6O	58.08	0.791	-95.0	5,69	56.0	30.2	508.0	47.0	-438.15(g) -248.2(l) -216.7(g)	-919.73(g -1785.7(l)
Acctylene Ammonia	C ₂ H ₂ NH ₃	26.04 17.03		-77.8	5.653	-81.5 -33.43	17.6 23.351	309.5 405.5	61.6 111.3	+226.75(g) +226.75(g) -67.20(l)	-1821.4(g) -1299.6(g)
Ammonium hydroxide	NH ₄ OH	35.03	55°00,000	MATERIAL .	(PPTMAL)	THE THE	Miles plans	Magrana	MARKET TO SEE	-46.19(g) -366.48(aq)	-382.58(g
Ammonium nitrate	NH ₄ NO ₃	80.05	1.725 ²⁵	169.6	5.4		Decompose	s at 210°C		-365.14(c) -399.36(ag)	Secretarios.
Ammonium sulfate	(NH ₄) ₂ SO ₄	132.14	1.769	513	words		Decomposes			-399.36(aq) -1179.3(c) -1173.1(aq)	
Aniline Benzaldehyde	C₅H₂N C₅H₃CHO	93.12 106.12	1.022 1.046	-6.3 -26.0	Mayora.	184.2 179.0	38.40	699	52.4	-88.83(I)	-3520.0(t)
}enzene	C_6H_6	78.11	0.879	5.53	9.837	80.10	30.765	562.6	48.6	-40.04(g) +48.66(l)	-3267.6(1)
Benzoie acid Benzyl alcohol	$C_7H_6O_2$ C_7H_8O	122.12 108.13	1.266 ¹⁵ 1.045	122.2 -15.4	Attenues.	249.8 205.2	**************************************	2779746	No. Table	+\$2.93(g)	-3301.5(g) -3226.7(g)
Fromine 2-Butadiene 3-Butadiene	Rr₂ C₄H₅	159,83 54,09	3.110	-7.4 -136.5	10.8	58.6 10.1	31.0	584 446	102	0(1)	-3741.8(I) -
-Butane	C₄H _€ C₄H _{I3}	54.09 58.12	Maria.	-100.1 -138.3	4,661	-4.6 -0.6	22.305	425 425,17	42.7 37.47	-147.0(1)	-2855.6(I)
sobutane	$C_{4}H_{13} \\$	58.12	Manage .	-159.6	4.540	-11.73	21.202	408.1	36.0	-124.7(g) -158.4(f)	-2878.5(g) -2849.0(l)
Butene alcium arbide	C ₄ H ₈ C _a C ₂	56.18 64.10	2.2318	-185.3 2300	3.8480	-6.25 -	21.916	419.6	39.7	-134.5(g) +1.17(g) -62.76(c)	-2868.8(g) -2718.6(g)
alcium arbonate	CaCO ₅	100,00	203		De	ecomposes	at 825°C			-1206.9(c)	STATE DISC.
alcium chloride	CaCl ₂	110.99	2.15215	782	28.37	>1600	Market and a second	-STREETS	- Section 1	-794.96(c)	Angelogo.

SEMESTER/SESSION: SEM I/ SESSION 2018/2019

COURSE NAME : MASS AND ENERGY BALANCE

PROGRAMME: DAK

COURSE CODE: DAK 12903

Compound	Formula	Mol. Wt.	SG (20°/4°)	$T_m({}^\circ\mathbb{C})^{t}$	$\frac{\Delta \hat{H}_{m}(T_{m})^{e,j}}{\text{kJ/mol}}$	$T_{\mathbb{S}}({}^{n}\mathbb{C})^{\mathfrak{S}}$	$rac{\Delta \hat{H}_{ m V}(T_{ m b})^{c_{ m J}}}{{ m kJ/m} { m pl}}$	$T_c(K)$ f	$P_{\sigma}(\operatorname{atm})\sigma$	$(\Delta \hat{H_l}^\circ)^{h,j}$ k J Imol	$(\Delta \hat{H}_z^a)^{i,j}$ kJ/mol
Methyl ethyl ketone	$C_{\phi}H_{\delta}O$	72.10	0.805	-87.1	The state of the s	78.2	32.0			Season P. C. Strange	-2436(i)
Naphthalene Nickel Nitric acid	C ₁₀ H ₅ Ni HNO ₃	128.16 58.69 63.02	1.145 8.90 1.502	80.0 1452 -41.6	10.47	217.8 2900 86	30,30	processors of the second	manyagan managan	O(c) -173.23(l)	-5157(g)
Nitrobenzene Nitrogen Nitrogen dioxide	C ₆ H ₂ O ₂ N N ₂ NO ₂	123.11 28.02 46.01	1.203	5.5 -210.0 -9.3	0.720 7.335	210.7 -195.8 21.3	5.577 14.73	126,20 431.0	33.5 100.0	-206.57(aq) 	-3092.8(I)
Nitric oxide Nitrogen pentoxide	NO N ₂ O ₅	30.01 108.02	1.6315*	-163.6 30	2.301	-151.8 47	13.78	179.20	65.0	+90.37(g)	
Nitrogen tetraoxide	N_2O_4	92.0	1.448	-9.5	-	21.1	No. Professorate	431.0	99,0	+9.3(g)	*********
Nitrous oxide	N_2O	44.02	1.226 📨	-01.1	40000 LUGy-	-58.8	24 may 194	309.5	71.70	+81.5(g)	Transacture.
-Nonane	C_9H_{29}	128.25	0.718	-53.8	****	150.6	de mayons	505	23.0	-229.0(1)	-6124.5m
-Octane	C_8H_{18}	114.22	0.703	-57.0	Walter	125.5	YOU.	568.8	24.5	-249.9(I)	-6171.0(g) -5470.7(l)
Oxalic acid Oxygen -Pentane	C ₂ H ₂ O ₄ O ₂ C ₃ H ₁₂	90.04 32.00 72.15	1.90 0.63 ¹⁸	-218.75 -129.6	Decompose 0.444 8.393	s at 186°C -182.97 <i>3</i> 6.07	6.82 25.77	 154.4 469.80	49.7 33.3	-208.4(g) -826.8(c) -0(g) -173.0(l)	-5512.2(g) -251.9(s) -3509.5(l)
sopentane	C_5H_{12}	72.15	0.6219	-160.1	***************************************	27.7	THE CONTRACTOR OF THE CONTRACT	461,00	32.9	-146.4(g) -179.3(t)	-3536.1(g) -3507.5(l)
Pentene henol	C ₅ H ₁₀ C ₅ H ₅ OH	70.13 94.11	0.641 1.071 ²⁵	-165.2 42.5	4.94 11.43	29,97 181,4	Millionery .	474 692.1	39.9 60.5	-152.0(g) -20.9(g) -158.1(l)	-3529.2(g) -3375.8(g) -3063.5(s)
nosphoric ocid	H ₂ PO ₄	98.00	1.83415	42.3	10.54	$(-\frac{1}{2}H_2Oa$	at 213°C)	and the	Miliforns	-90.8(g) -1281.1(c) -1278.6(aq.	NAME OF THE PARTY
iosphorus redj	P_4	123,90	2.20	590 ^{43 alm}	81.17	Ignites in a	nir. 725°C	-	elektron.	-12/8.6(aq, 1H ₂ O) -17.6(c) O(c)	MPROSE.

SEMESTER/SESSION: SEM I/ SESSION 2018/2019

COURSE NAME : MASS AND ENERGY BALANCE

PROGRAMME: DAK

COURSE CODE: DAK 12903

Form 1: $C_p[kJ/(mol\cdot^cC)]$ or $[kJ/(mol\cdot K)] = a + bT + cT^2 + dT^3$ Form 2: $C_p[kJ/(mol\cdot^cC)]$ or $[kJ/(mol\cdot K)] = a + bT + cT^{-2}$

Example: $(C_p)_{actione(p)} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-5})T^2 + (34.76 \times 10^{-12})T^3$, where T is in °C.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.

Compound	Formula	Mol. Wil.	State	Form	Temp. Unit	a × 10 ⁷	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
Aceione	CH ₃ COCH ₃	58.08	Parties of	1	ac.	123.0	18.6			-30-60
Acetylene Air	C_2H_2	26.04 29.0	e E	100	°C °C	71.96 42.43 28.94	20.10 6.053 0.4147	-12.78 -5.033 0.3191	34.76 18.20 -1.965	0-1200 0-1200 0-1200 0-1500
Ammonia Ammonium sulfate Benzene	NH ₃ (NH ₄) ₂ SO ₄ C ₆ H ₅	17.03 132.15 78.11	EQ (1) (1)	bertie drawn mount, dawn	K °C K °C	28.09 35.15 215.9 126.5	0.1965 2.954 23.4	0.4790 0.4421	-1.965 -6.686	273-1800 0-1200 275-328 6-67
Isobutane n-Butane Isobutene Cakeium carbide Cakeium carbonate Calcium hydroxide Calcium oxide Carbon Carbon dioxide Carbon monoxide Carbon tetrachloride Chlorine Copper	C ₄ H ₁₀ C ₄ H ₁₀ C ₄ H ₅ CaC ₂ CaCO ₃ Ca(OH) ₂ CaO C CO ₂ CO CCL ₄ Cl ₂ Cu	58.12 58.12 56.10 64.10 100.09 74.10 56.08 12.01 44.01 28.01 153.84 70.91 63.54	・・・・・・・・・・・いいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい<l>いいいいいいいいいいいいいいいいいいいいい<l>いいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい<l>いいいいいいいいいいいいいいいいいいいいい<l>いいいいいいいいいいいいいいいいいいいいい<l>いいいいいいいいいいいいいいいいいいいいい<l>いいいいいいい<</l></l></l></l></l></l>	1 2 2 1 2 2 1 1 1 1 1 1	オウオプウメメメメメのこう	74.06 89.46 92.30 82.88 68.62 82.34 89.5 41.84 11.18 36.11 28.95 93.39 33.60 22.76	32.95 30.13 27.88 25.64 1.19 4.975 2.03 1.095 4.230 0.4110 12.98 1.367 0.6117	-25.20 -18.91 -15.47 -17.27 -8.66×10^{10} -12.87×10^{10} -4.52×10^{10} -4.891×10^{10} -2.887 0.3548 -1.607	77.57 49.87 34.98 50.50 — 7.464 -2.220 6.473	0-1200 0-1200 0-1200 0-1200 0-1200 298-720 273-1033 276-373 273-1173 273-1373 0-1500 0-1500 273-343 0-1200 273-1357

SEMESTER/SESSION: SEM I/ SESSION 2018/2019

COURSE NAME : MASS AND ENERGY BALANCE

PROGRAMME: DAK

COURSE CODE: DAK 12903

- 1											
	7. V ·										
	Nitrogen	N_2	28.02	Œ	1	GY_	29.00	0.2199	0.5723	-2.871	0-1500
	Nitrogen dioxide	NO_2	46.01	11	1	°C	36.07	3.97	-2.88	7.87	0-1200
	Nitragen tetraoxide	N_2O_4	92.02	13	1	oC.	75.7	12.5	-11.3		0-300
	Nitrous oxide	N_2O	44.02	E	1	QC.	37.66	4.151	-2.694	10.57	0-1200
	Oxygen	O_2	32.00	11	1	°C	29.10	1.158	-0.6076	1.311	0-1500
	n-Pentane	C_5H_{12}	72.15	Ī	1	°C	155.4	43.68	area i c	174.1	0-36
	***			<u>B</u>	1	°C	114.8	34.09	-18.99	42.26	0-1200
	Propane	C_3H_8	44.09	Д	1	°C	68,032	22.59	-13.11	31.71	0-1200
	Propylene	C_3H_6	42.08	27	1	aC.	59,580	17.71	-10.17	24.60	0-1200
	Sodium carbonate	Na ₂ CO ₃	105.99	C	1	K	121		W 101 W 1	ar. cal	288-371
	Sodium carbonate	Na_2CO_3	286.15	C	1	K	535.6				298
	decahydrate	$-10H_{2}O$									290
	Sulfur	S	32.07	C	1	K	15.2	2.68			273-368
			(Rho	ombic)				Maria 160 red			213-1133
				C	1	K	18.3	1.84			368-392
	Jones de la companya del companya de la companya del companya de la companya de l		(Mon	oclinic)							and the first of the
	Sulfuric acid	H_2SO_4	98.08	Ĭ	1	C	139.1	15.59			10-45
	Sulfur dioxide	SO_{2}	64.07	<u>u</u>	1	°C	38.91	3.904	-3.104	8.606	0-1500
	Sulfur trioxide	50_3	80.07	<u>E</u>	1	°C	48.50	9.188	-8.540	32.40	0-1000
	Toluene	$C_{\tau}H_{s}$	92.13	1	1	M.	148.8	32.4	Seed on and "To Seed"	and when a triple field	0-100
	3.9.5			15	1	°C	94.18	38.00	-27.86	80.33	0-110
	Water	H_2O	18.016	demak	- Parent	°C	75.4	No. sec. A. Sel. All	was or well-the	CLIVO	0-1200 0-100
				£	1	$^{\circ}C$	33.46	0.6880	0.7604	-3.593	0-100 0-1500
								44 4 44 44 W	Service of Aut South S	ಹೌಕಾಗಿ ಚಿಕ್ಕಗೆ -	0-13/67

TERBUKA