

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2018/2019

COURSE NAME

PHYSICS III

COURSE CODE

DAS 24603

PROGRAMME CODE

DAU

EXAMINATION DATE

DECEMBER 2018 / JANUARY 2019

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS IN SECTION A AND THREE (3)

QUESTIONS IN SECTION B

THIS QUESTION PAPER CONSISTS OF ELEVEN (11) PAGES

SECTION A

Q1 (a) Define Magnetic Field.

(2 marks)

- (b) An alpha particle, α ($\alpha = 2e^-$) is moving at 2.50×10^6 ms⁻¹ perpendicular to a 1.50 T magnetic field. If the charge of an electron is 1.60×10^{-19} C and the mass of an alpha particle is 6.68×10^{-27} kg, calculate:
 - (i) the magnitude of the force acting on the alpha particle due to the magnetic field.
 - (ii) the radius of the circle in which the alpha particle moves.

(6 marks)

- (c) A current is flowing through a wire as shown in **Figure Q1** (c). Determine the directions of magnetic fields due to the current flowing in the wire at Points P and Q (either out of or into the page), and state the rule used to determine the direction.

 (3 marks)
- (d) Two long straight parallel wires both carrying current of 3.50 A and 5.80 A in the same direction as shown in **Figure Q1** (d). Find:
 - (i) the magnitude and direction of the magnetic field on wire A due to wire B.
 - (ii) the magnitude and direction of the magnetic field on wire B due to wire A.
 - (iii) the magnitude and direction of the magnetic force experienced by a 35 cm length of wire A.

(9 marks)

- **Q2** (a) Figure Q2 (a) shows a two loop circuit connected in parallel. The current I_1 that passed through R_1 is 1.41 A. Given; $R_1=2\Omega$, $R_2=1\Omega$, $R_3=0.5\Omega$, $R_4=7\Omega$, $R_5=1.5\Omega$, $V_2=15V$, and $V_3=18V$. By using Kirchhoff's Law, calculate:
 - (i) the current I_2 and I_3 .
 - (ii) the voltage V_1 .

(12 marks)

- (b) Four resistors are connected in a closed circuit as shown in **Figure Q2 (b)**. Given the battery with an e.m.f of 9 V and internal resistance of 4 Ω , and $R_1 = 4 \Omega$, $R_2 = 2 \Omega$, $R_3 = 10 \Omega$, and $R_4 = 12 \Omega$. Find:
 - (i) the equivalent resistance for external loaded.
 - (ii) the current drawn from the battery.

(8 marks)

SECTION B

Q3 (a) Two like-charged balloons will repel each other. List **two (2)** variables or quantities that will increase the strength of their repulsive force.

(2 marks)

(b) By referring to the **Figure Q3** (b), calculate the vector components (in x and y components) of electrostatic force on charge Q_3 due to the other charges.

(10 marks)

(c) A 11 μC and a 13 μC charges are separated by 18 cm as shown in Figure Q3
(c). If the point P is the point of zero net electric field, find the value of x.
(8 marks)

- Q4 (a) Draw an electric field lines for following conditions:
 - (i) two opposite sign charges
 - (ii) two identical sign charges.

(4 marks)

- (b) Two point charges Q_1 and Q_2 are placed near to point A as shown in **Figure Q4** (b). Calculate:
 - (i) the magnitude and direction of resultant electric field at point A.
 - (ii) the electric potential between point A and B if the electric field from point A to point B calculated from Q4 (b)(i) is constant.

(16 marks)

Q5 (a) State two (2) benefits of using dielectric materials in a capacitor.

(2 marks)

- (b) By referring to the **Figure Q5** (b), the values of capacitor are $C_1 = 2 \mu F$, $C_2 = 4 \mu F$, $C_3 = 6 \mu F$, $C_4 = 8 \mu F$, and $C_5 = 10 \mu F$. Calculate:
 - (i) the equivalent capacitance.
 - (ii) the potential difference across capacitor C₃.

(9 marks)

- (c) Two square conductor plates of 15 cm on each side which are separated by 5.50 mm are inserted with two types of dielectric as shown in **Figure Q5 (c)**. Half of the space is filled with glass while the other half is filled with paper. The dielectric constant of glass and paper are 3.90 and 2.50 respectively. Determine:
 - (i) the capacitance of this combination.
 - (ii) the energy stored in this capacitor if a battery of 26 V is connected across the plates.

 TERBUK (9 marks)

Q6 (a) Sketch a current-voltage (I-V) graph that represent an ohmic devices.

(2 marks)

- (b) A current of 2.50 A is carried by a copper wire of radius 3.50 mm and length 5.40 m. The resistivity of copper is $1.70 \times 10^{-8} \Omega m$. Calculate:
 - (i) the resistance of the copper wire.
 - (ii) the potential difference across the copper wire.
 - (iii) the drift velocity of electron if the copper wire contains 8.50×10^{28} electrons per cubic meter.

(8 marks)

(c) Six resistors, each with resistance of 5 Ω are arranged as shown in the **Figure Q6** (c). Calculate the equivalent resistance between point A and point B.

(10 marks)

Q7 (a) Define Faraday's Law of Induction.

(2 marks)

- (b) A circular coil is placed in a magnetic field directed 30° to the normal of the coil. The coil has 200 turns and radius of 2.8 cm. from the graph of magnetic field variation versus time as shown in **Figure Q7** (b). Determine:
 - (i) the magnetic flux linkage through the coil at the maximum magnetic field.
 - (ii) the e.m.f. induced in the coil during the first 10 s.
 - (iii) the e.m.f. induced in the coil between 10 s to 15 s.
 - (iv) From the sign of the induced e.m.f. in Q7 (b)(ii) and Q7 (b)(iii), conclude the relation between magnetic flux and induced e.m.f.

(12 marks)

- (c) A step-down transformer has 330 turns in the primary coil and 20 turns in secondary coil. The primary coil is connected to an AC power supply of 120 V and a current of 0.75 A is drawn when the power supply is turned on. Calculate:
 - (i) the voltage across the secondary coil.
 - (ii) the current in the secondary coil.

(6 marks)

-END OF QUESTION-

SEMESTER / SESSION : SEM I / 2018/2019

COURSE NAME

: PHYSICS III

PROGRAMME CODE: DAU

COURSE CODE : DAS 24603

Figure Q1 (c)

Figure Q1 (d)

SEMESTER / SESSION : SEM I / 2018/2019

COURSE NAME

: PHYSICS III

PROGRAMME CODE : DAU

COURSE CODE

Figure Q2 (a)

Figure Q2 (b)

SEMESTER / SESSION : SEM I / 2018/2019

COURSE NAME

: PHYSICS III

PROGRAMME CODE: DAU

COURSE CODE

Figure Q3 (b)

Figure Q3 (c)

SEMESTER / SESSION : SEM I / 2018/2019

COURSE NAME

: PHYSICS III

PROGRAMME CODE: DAU

COURSE CODE

Figure Q5 (b)

Figure Q5 (c)

SEMESTER / SESSION : SEM I / 2018/2019

COURSE NAME

: PHYSICS III

PROGRAMME CODE: DAU

COURSE CODE

Figure Q6 (c)

Figure Q7 (b)

SEMESTER / SESSION : SEM I / 2018/2019

COURSE NAME : PHYSICS III

PROGRAMME CODE: DAU

COURSE CODE : DAS 24603

FORMULA

TORNOLA		
$q = \pm ne$	P: $C_{eq} = C_1 + C_2$	$B = \mu nI$
$F_{12} = k \frac{q_1 q_2}{r^2}$	S: $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$	$B = \frac{\mu_o I}{2\pi r}$
$E = \frac{kQ}{r^2}$	$U = \frac{1}{2}CV^2$	$B = N \frac{\mu_o I}{2\pi r}$
F = qE	Q = It	$\Phi_B = BAcos\theta$
$\phi_{enclosed} = \oint\limits_{\substack{closed\system}} ec{E} \cdot dec{A}$	$R = \frac{\rho L}{A}$	$\Phi_B = NBAcos\theta$
$\phi_{enclosed} = \frac{q_{enclosed}}{\varepsilon_o}$	$\sigma = \frac{1}{\rho}$	$\varepsilon = -N \frac{\Delta \Phi_E}{\Delta t}$
$\Phi_E = EAcos\theta$	V = IR	E = vB
$V = \frac{W}{q}$	$P = \frac{QV}{t}$	$I = \frac{BLv}{r}$
W = qEd	I = nAve	V = BLv
$\Delta W = -\Delta U$	J = nve	V = Ed
$ R = \sqrt{x^2 + y^2}$	$V_{ab} = \varepsilon - Ir$	$F_{B} = qvBsin\theta$
$V = \frac{kQ}{r}$	$I = \frac{\varepsilon}{R+r}$	$\frac{V_S}{V_P} = \frac{N_S}{N_P}$
$tan\theta = \frac{y}{x}$	S: $R_{eq} = R_1 + R_2$	$\frac{V_S}{V_P} = \frac{I_P}{I_S}$
$C = \frac{\varepsilon_o A}{d}$	P: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$	$r = \frac{mv}{qB}$
$C = \frac{Q}{V}$	$F_C = \frac{mv^2}{r}$	$EA = \frac{Q}{\varepsilon_o}$
$C = \frac{\kappa \varepsilon_o A}{d}$	$F = ILBsin\theta$	TERBUKA

SEMESTER / SESSION : SEM I / 2018/2019 COURSE NAME : PHYSICS III

PROGRAMME CODE: DAU

COURSE CODE : DAS 24603

LIST OF CONSTANT

Gravity acceleration, $g = 9.81 \text{ m} \cdot \text{s}^{-2}$ 1.

Rydberg constant, $R = 1.097 \times 10^7 \text{ m}^{-1}$ 2.

Permeability of free space, $\mu_0 = 4\pi \times 10^{-7} \text{ N} \cdot \text{m}^{-1}$ 3.

Permittivity of free space, $\varepsilon_o = 8.854 \times 10^{-12} (\text{N} \cdot \text{m})^{-2} \cdot \text{C}^2$ 4.

Planck constant, $h = 6.63 \times 10^{-19} \text{ J} \cdot \text{s}$ 5.

Speed of light in air, $c = 3.00 \text{ x } 10^8 \text{ m} \cdot \text{s}^{-1}$ 6.

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ 7.

Coulomb constant, $k = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ 8.

Resistivity of copper, $\rho_{\text{copper}} = 1.67 \times 10^{-8} \ \Omega \cdot \text{m}$ 9.

Mass of electron, $m_e = 9.1 \times 10^{-31} \text{ kg}$ 10.

Mass of proton, $m_p = 1.673 \times 10^{-27} \text{ kg}$ 11.

1 mole = 6.02×10^{23} atoms 12.

