

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2018/2019**

COURSE NAME

: CHEMISTRY

COURSE CODE

: DAM 10403

PROGRAMME CODE : DAM

EXAMINATION DATE : DECEMBER 2018 / JANUARY 2019

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION

PART A: ANSWER ALL QUESTIONS

PART B: ANSWER TWO (2) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

DAM 10403

PART A

- Q1 (a) Write the conditions of a chemical reaction achieving an equilibrium state. (2 marks)
 - (b) Name any **two (2)** factors that can affect the equilibrium state of a chemical system. (2 marks)
 - (c) Write the equilibrium constant expression, K_c and K_p for the following equilibrium reactions:
 - (i) $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$
 - (ii) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
 - (iii) $CO(g) + C(s) \rightleftharpoons CO_2(g)$

(6 marks)

(d) Given the following reaction at equilibrium state,

$$2HCl(g) \rightleftharpoons H_2(g) + Cl_2(g)$$

At 20 $^{\circ}\text{C}$ and in the equilibrium state, a 1 L flask contains 1.2 M HCl, 1.0 M H_2 and 0.75 M $\text{Cl}_2.$ Find

- (i) K_c for the forward reaction.
- (ii) K_c for the reverse reaction.

(10 marks)

- Q2 (a) Write the dissociation constant equation of water, K_w when its molecule dissociated into ions [H⁺] and [OH⁻] at 25°C and assuming water concentration constant. (2 marks)
 - (b) Identify the acid and base conjugate of the following acid-base pairs.
 - (i) HSO_4^-/H_2SO_4
 - (ii) H_2CO_3/HCO_3^-

(4 marks)

(c) Calculate the concentration of OH⁻ ion in a HCl solution whose hydrogen ion concentration is 1.3 M.

(5 marks)

- (d) pH of milk of magnesia is 10.25. Find:
 - (i) pOH
 - (ii) Concentration of hydrogen ion [H⁺]
 - (iii) Concentration of hydroxide ion [OH⁻]

DAM 10403

- Q3 (a) (i) Differentiate between an oxidation and a reduction process.
 - (ii) Define a redox reaction.

(4 marks)

- (b) Explain the redox reaction that occurs in
 - (i) a voltaic cell
 - (ii) an electrolytic cell

(6 marks)

(c) A voltaic cell is assembled as follows:

$$\operatorname{Cd}(s) + \operatorname{Fe}^{2+}(aq) \to \operatorname{Cd}^{2+}(aq) + \operatorname{Fe}(s)$$

- (i) Write the half cell reactions at the anode and cathode.
- (ii) Draw the cell diagram notation.
- (iii) Calculate the standard emf, E^{0}_{cell} of this reaction at 298 K.
- (iv) Calculate E_{cell} , when $[Cd^{2+}] = 0.010 \text{ M}$, and $[Fe^{2+}] = 0.60 \text{ M}$

(10 marks)

DAM 10403

PART B

- Q4 (a) 27 g of Al metal reacts with excess hydrochloric acid, HCl to produce AlCl₃ and hydrogen gas, H₂.
 - (i) Write a balanced chemical equation of the above reaction.
 - (ii) Calculate the mass (in gram) of AlCl₃ and H₂ formed.

(12 marks)

(b) 45.0 g of NaCl was used to prepare a 1.3 M solution. Calculate the volume of distilled water needed to dissolve the salt.

(5 marks)

(c) In a dilution experiment, water is added to a 0.885 M KBr solution. If the initial volume of KBr solution is 76.5 mL, calculate the final volume of solution so that the final concentration is 0.050 M.

(3 marks)

- Q5 (a) Name the type of bond in the following compounds.
 - (i) NaCl
 - (ii) SO₂

(2 marks)

(b) Draw the Lewis structure of PO₃³⁻ ion.

(8 marks)

- (c) A metal can of volume 2.0 L contains 2.0 g of nitrogen gas and 6.0 g of hydrogen gas at 200 °C. Calculate the
 - (i) number of mole of nitrogen and hydrogen gases.
 - (ii) partial pressure of nitrogen and hydrogen gases.
 - (iii) total pressure of gas in the can.

(10 marks)

DAM 10403

Q6	(a)	Given the following set of four quantum numbers (n, l, m_l, m_s) .	
----	-----	--	--

- (i) $(3, 3, 2, \frac{1}{2})$
- (ii) $(4, 1, 2, -\frac{1}{2})$

In each set, one of the quantum number is not correct. State the incorrect one, and then write the correct set.

(4 marks)

- (b) Given a subshell of 4p⁴.
 - (i) Write the value of n and l.
 - (ii) Draw the orbital atom diagram of electrons in the subshell.

(4 marks)

- (c) Atomic number of atom Sc is 21.
 - (i) Identify the group and period of Sc in the Periodic Table.
 - (ii) Which electrons will lose when ion Sc³⁺ is formed.

(4 marks)

- (d) Atoms M and X lied in group 2 and 16 respectively. If M is a metal and X is a non-metal atom,
 - (i) Write the formula of the metal oxide formed.
 - (ii) State the property of the oxide.

(4 marks)

- (e) Discuss the following change physical properties of atoms down a group and across a period in the Periodic Table.
 - (i) Ionic radius
 - (ii) Ionization energy

(4 marks)

DAM 10403

Q7 (a) (i) State the Hess's Law.

(ii) Determine the standard enthalpy of reaction (ΔH_{rsn}°) for the reduction of iron (II) oxide by carbon monoxide using Hess's Law.

FeO
$$(s)$$
 + CO (g) \rightarrow Fe (s) + CO₂ (g)

Given,

$$3\text{Fe}_2\text{O}_3(s) + \text{CO}(g) \rightarrow 2\text{Fe}_3\text{O}_4(s) + \text{CO}_2(g)$$
; $\Delta H_{\text{rsn}}^{\circ} = -48.26 \text{ kJ}$

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$
; $\Delta H_{rm}^{\circ} = -23.44 \text{ kJ}$

$$Fe_3O_4(s) + CO(g) \rightarrow 3FeO(s) + CO_2(g)$$
 ; $\Delta H^{\circ}_{rxn} = + 21.79 \text{ kJ}$ (9 marks)

(b) The following data were measured for the reaction of $S_2O_8^{\ 2-}$ ion with I^- ion.

$$S_2O_8^{2-}(aq) + 2I^-(aq) \rightarrow 2SO_4^{2-}(aq) + I_2(aq)$$

Experiment	$[S_2O_8^{2-}]/M$	$[I^-]/M$	Initial rate / Ms ⁻¹
1	0.080	0.034	2.2×10^{-4}
2	0.080	0.017	1.1×10^{-4}
3	0.160	0.017	2.2×10^{-4}

(i) If x and y are reaction order of $S_2O_8^{2-}$ and I^- respectively, and k the rate constant, write the rate law, r of the reaction.

(ii) Determine the value of x and y.

(iii) Find k.

(7 marks)

(c) Explain the function of catalyst in a chemical reaction.

(3 marks)

- END OF QUESTIONS -

DAM 10403

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2018/2019

COURSE NAME : CHEMISTRY

PROGRAMME CODE: DAM

COURSE CODE : DAM 10403

ATOMIC NUMBER OF ELEMENTS

Name of Atom	Atomic Symbol	Atomic Number
Hydrogen	Н	1
Oxygen	O	8
Phosporus	Р	15
Scandium	Sc	21

ATOMIC MASS OF ELEMENTS

Name of Element	Element Symbol	Atomic Mass /a.m.u
Aluminium	Al	27
Chlorine	Cl	35.5
Hydrogen	Н	1
Natrium	Na	23

CHEMICAL CONSTANTS

Name	Symbol	Value
Water dissociation constant	$K_{ m W}$	1.0×10^{-14}
Standard reduction electrode Fe	E^{o} (Fe ²⁺ /Fe)	- 0.44 V
Standard reduction electrode Cd	E^{o} (Cd ²⁺ /Cd)	- 0.40 V
Gas constant	R	0.0821 L.atm/mol.K

