

UNIVERSITI TUN HUSSEIN ONN **MALAYSIA**

FINAL EXAMINATION SEMESTER II **SESSION 2018/2019**

COURSE NAME

: CONTROL SYSTEM

COURSE CODE

: DAE 32103

PROGRAMME CODE : DAE

EXAMINATION DATE : JUNE / JULY 2019

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION

: ANSWER FOUR (4) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF THIRTEEN (13) PAGES

(iv)

variable.

Q1	(a)	Contro applica machin	ol system is an important part of technology nowa ation can range from house appliances to large nes.	adays. Its industrial
		(i)	Define control system.	(2 marks)
		(ii)	List two types of control system configuration.	(2 marks)
		(iii)	Give one (1) example for each of the system configura	
	answered in Q1(a)(ii).	answered in Q1(a)(ii).	(2 marks)	
		(iv)	For each example in Q1(a)(iii), briefly explain its op	eration in
			term of control system. (6 marks	
	(b)	and so	back is a system that maintains a relationship between tome reference input by comparing them and using the means of control.	the output difference
			List two (2) effects of adding a feedback in the perfo	rmance of
			control system. (2 mar)	
		(ii)	Figure Q1(b)(ii) shows a block diagram of a contraint with feedback system. Find its transfer function, $M(s)$	
				(7 marks)
		(iii)	If the system in Q1(b)(ii) feedback is replace with feedback, find its new transfer function.	th a unity (2 marks)

Differentiate between controlled variable and manipulated

(2 marks)

- Q2 (a) In order to compute the time response of a dynamic system, laplace transform technique is used to solve the differential equation for a given inputs. For each differential equation below, find the laplace transform
 - (i) $f(t) = e^{-2t}$ (5 marks)
 - (ii) $f(t) = e^{-2t} + 2e^{-4t}$ (7 marks)
 - (b) To determine the output response of a transfer function, there are commonly 3 types of input function used.
 - (i) List down all the three (3) inputs function.

(3 marks)

(ii) Sketch the signal of the three (3) inputs function.

(3 marks)

(iii) Find the output response, c(t) to an input of unit ramp, r(t) for the following transfer function. Assume that the initial condition is zero.

$$\frac{d}{dt}c(t) + 8c(t) = \frac{d}{dt}r(t)$$

(7 marks)

- Q3 (a) Figure Q3(a) shows a diagram of a spring-mass-damper system.
 - Draw the free body diagram of the system in t-domain and s-domain.

(4 marks)

(ii) Derive the system transfer function, $G(s) = X_0(s) / X_i(s)$.

(3 marks)

- (b) Given a block diagram as shown in Figure Q3(b).
 - (i) Find the equivalent single block that represents the transfer function, T(s) = C(s) / R(s). Show your calculation.

(9 marks)

(ii) Calculate the damping ratio (ζ), rise time (t_r), peak time (t_p) and damping response type.

(7 marks)

(iii) State the other two (2) types of damping response in second order system.

(2 marks)

- Q4 (a) The use of digital control systems have grown significantly over the past three decades as the price and reliability of digital computers have improved dramatically.
 - (i) Explain the advantages of digital control system.

(4 marks)

(ii) Name four (4) types of signals involved in digital control system.

(4 marks)

(iii) Figure Q4(a)(iii) shows the general block diagram of a digital control system. Sketch the signals r(t), u(t), y(t), u(k) and y(k).

(5 marks)

- (b) Data acquisition is the process of automatically importing data from an instrument into a computer.
 - Draw the complete block diagram of data acquisition system.

(8 marks)

(ii) Signal conditioning is an important step in data acquisition. Describe the steps involved in signal conditioning.

(4 marks)

- Q5 (a) An analog to digital converter (ADC) is a very useful device that converts an analog voltage to a digital number. By converting from the analog world to the digital world, we can begin to use electronics to interface to the analog world around us.
 - (i) Name two (2) common methods used in ADC.

(2 marks)

(ii) ADC performs three main operations. Briefly explain each operation.

(6 marks)

(iii) Suppose we were measuring the height of water in a 20-ft tall storage tank using an instrument with an 8-bit ADC. Determine how much physical water level will be represented in each step of the ADC.

(2 marks)

(iv) If the 8-bit ADC in Q5(a)(iii) has a maximum range of 12V. Calculate the input voltage of the ADC and height of the water in the tank (in ft) if the output of the ADC is 1000 1111.

(5 marks)

(b) In process control system, input signal is converted from continuousvarying physical value into a continuously varying electrical signal. List four (4) physical values commonly measured in process control.

(4 marks)

(c) Describe the differences between sequential process control and continuous process control.

(6 marks)

Q6 (a) Explain why instrumentation such as indicators, annunciators and alarms are very important in process control.

(4 marks)

- (b) Figure Q6(b) shows a water level control system using cascade controller.
 - Draw the block diagram of the system.

(7 marks)

(ii) Name two (2) other types of process control loop apart from open loop and closed loop.

(2 marks)

- (c) Proportional-Integral-Derivative (PID) controller are used in most automatic process control applications in the industry.
 - (i) Briefly describe the function of 'P', 'I' and 'D' component.

(6 marks)

(ii) Figure Q6(c)(ii) shows a closed loop control system using PID controller. Given the transfer function for the PID controller, G_c(s) and also the plant's transfer function, G(s):

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s \qquad G(s) = \frac{1}{s+a}$$

Derive the expression for $M(s) = \frac{Y(s)}{R(s)}$ in terms of parameters a, K_d , K_i and K_p .

(6 marks)

SEMESTER/SESSION: SEM II/2018/2019 COURSE NAME : CONTROL SYSTEM

NITROL SYSTEM COU

PROGRAMME: DAE COURSE CODE: DAE 32103

FIGURE Q1(b)(ii)

FIGURE Q3(a)

FIGURE Q3(b)

EICHEE OP(P)

FIGURE Q4(a)(iii)

COURSE CODE: DAE 32103

PROGRAMME: DAE

VE CONTROL SYSTEM

COURSE NAME

SEMESLER/SESSION: SEM II/5018/5019

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2018/2019

COURSE NAME

: CONTROL SYSTEM

PROGRAMME: DAE

COURSE CODE: DAE 32103

FIGURE Q6(c)(ii)

SEMESTER/SESSION: SEM II/2018/2019 COURSE NAME : CONTROL SYSTEM PROGRAMME: DAE COURSE CODE: DAE 32103

LAPLACE TRANSFORM TABLE

Item no.	f(t)	F(s)
1.	$\delta(t)$	1
2.	u(t)	$\frac{1}{s}$
3.	tu(t)	$\frac{\frac{1}{s}}{\frac{1}{s^2}}$
4.	$t^n u(t)$	$\frac{n!}{s^n+1}$
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^2 + \omega}$
7.	$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega}$

LAPLACE TRANSFORM THEOREM

ltem no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F(s)$	$f(t) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	A. Caracana and a car	Linearity theorem
3.	S 25 (15 (5 5)	$[f] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$		Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$		Time shift theorem
6.	$\mathcal{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathcal{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathcal{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - s f(0-) - f'(0-)$	Differentiation theorem
9.	$\mathcal{L}\left[\frac{d^n f}{dt^n}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathcal{L}\left[\int_{0-}^{t}f(\tau)d\tau\right]$	$\frac{1}{s} = \frac{F(s)}{s}$	Integration theorem
11.		$= \lim_{s \to 0} sF(s)$	Final value theorem1
12.	f(0+)	$= \lim_{s \to \infty} sF(s)$	Initial value theorem ²

SEMESTER/SESSION: SEM II/2018/2019 COURSE NAME : CONTROL SYSTEM PROGRAMME: DAE COURSE CODE: DAE 32103

LIST OF FORMULAE: Mechanical Components Table

Component	Force- velocity	Force- displacement	Impedance $Z_M(s) = F(s)/X(s)$	
Spring $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = Kx(t)	K	
Viscous damper $x(t)$ f_{v}	$f(t) = f_v v(t)$	$f(t) = f_v \frac{dx(t)}{dt}$	$f_{i'}s$	
Mass $x(t)$ $M \longrightarrow f(t)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms^2	

LIST OF FORMULAE: Electrical Components Table

Component	Voltage-current	Current-voltage	Voltage-charge	impedance Z(s) = V(s)/I(s)	Admittance Y(s) = I(s)/V(s)
(Capacitor	$v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}g(t)$	$\frac{1}{Cs}$	Cs
-\\\\\- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
Inductor	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

SEMESTER/SESSION: SEM II/2018/2019 COURSE NAME : CONTROL SYSTEM PROGRAMME : DAE COURSE CODE: DAE 32103

LIST OF FORMULAE: Block Diagram Tranformations

	Manipulation	Original Block Diagram	Equivalent Block Diagram	Equation
1	Combining Blocks in Cascade	$X \longrightarrow G_1 \longrightarrow G_2 \longrightarrow Y$	$X \longrightarrow \boxed{G_1G_2} \longrightarrow Y$	$Y = (G_1G_2)X$
2	Combining Blocks in Parallel; or Eliminating a Forward Loop	$X \longrightarrow G_1 \longrightarrow X$ f	$X \longrightarrow G_1 \pm G_2 \longrightarrow Y$	$Y = (G_1 \pm G_2)X$
3	Moving a pickoff point behind a block	$u \longrightarrow G \longrightarrow y$	$u \longrightarrow G \longrightarrow Y$ $u \longleftarrow 1/G \longrightarrow Y$	$y = Gu$ $u = \frac{1}{G}y$
4	Moving a pickoff point ahead of a block	$u \longrightarrow G \xrightarrow{y} y$	$ \begin{array}{cccc} u & & & & & & & & & & & & & & & & & & &$	y = Gu
5	Moving a summing point behind a block	$u_1 \longrightarrow G \longrightarrow G \longrightarrow y$ $u_2 \longrightarrow G \longrightarrow y$	$\begin{array}{c} u_1 \longrightarrow G \longrightarrow y \\ u_2 \longrightarrow G \end{array}$	$e_2 = G(u_1 - u_2)$
6	Moving a summing point ahead of a block		$u_1 \longrightarrow G \longrightarrow Y$ $1/G \longleftarrow u_2$	$y = Gu_1 - u_2$
			$G_2 \bullet I/G_2 \Rightarrow G_1 \Rightarrow y$	$y = (G_1 - G_2)$

LIST OF FORMULAE: Second Order System Parameters

Rise time, $t_r = \frac{\pi - \cos^{-1} \zeta}{\omega_n \sqrt{1 - \zeta^2}}$	Peak time, $t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$
Percentage overshoot,	Settling time,
$\%M_p = e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}}$	$t_S = \frac{4}{\zeta \omega_n}$ (2% criterion)
P	$t_{\rm S} = \frac{3}{\zeta \omega_n} $ (5% criterion)