

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2019/2020**

:

COURSE NAME

PHYSICS FOR ENGINEERING

TECHNOLOGY

COURSE CODE

DAK 13003

PROGRAMME CODE : DAK

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION

3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

DAK 13003

- Q1 (a) SI unit a standard unit used by scientists and engineers worldwide.
 - (i) State the base unit for force, pressure and acceleration.
 - (ii) An acre is defined such as 640 acres = 1 miles². Calculate how much square meters (m²) are there in 2.5 acres. (Given 1 mile = 1609 meter).
 - (iii) The mass of a solid cube is 1207 g. The cube as even length, width and height of 2 inch. Calculate the density of the cube in SI units. (Given 1 inch = 2.54 cm). (10 marks)
 - (b) Explain value, dimensions and unit in a table form, using suitable examples. (6 marks)
 - (c) Write these values in scientific notations.
 - (i) 3 079 000 000 000 000 000 000 000 seconds.
 - (ii) 0.000 000 000 000 635 meter.

(4 marks)

Q2 (a) Give two (2) examples of vector quantity.

(2 marks)

- (b) Given four vectors of **A**, **B**, **C**, and **D**. The value of $\mathbf{A} = 5 \text{ m} \angle 15^{\circ}$, $\mathbf{B} = 10 \text{ m} \angle 240^{\circ}$, $\mathbf{C} = 15 \text{ m}$, N 20° W and $\mathbf{D} = 20 \text{ m} \angle -30^{\circ}$.
 - (i) Draw all vectors in x-y axes.
 - (ii) Find the magnitude and direction of resultant vector $\mathbf{E} = \mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D}$. (18 marks)

Q3 (a) "Forces always come in pairs. The forces in pair are equal in magnitude and opposite in direction.". Sketch a diagram to explain this statement.

(2 marks)

- (b) **Figure Q3 (b)** shows a wooden frame is attached to a 950-gram box through a smooth, frictionless pulley. The box is located on an inclined, rough surface with the coefficient of friction 0.3. The direction of the system movement is shown in the figure above.
 - (i) Calculate the wooden frame mass (kg) if the system accelerates at 3 ms⁻².
 - (ii) Calculate the tension of the string, T in Newton.
 - (iii) Calculate the normal force of the box, N in Newton.

(12 marks)

- (c) A 15.0 N force is applied at an angle of 30° to the horizontal to push a 0.75 kg block to the right side on a frictionless surface.
 - (i) Sketch the free-body diagram (FBD) for this scenario.
 - (ii) Calculate acceleration of the system.

(6 marks)

- Q4 (a) A girl tries to slide a box by applying a 120 N horizontal force, F on the box as shown in **Figure Q4** (a). The force is applied 30° above the horizontal surface. The frictional force opposing the motion is 50 N and he targets to slide the box 1.5 m to the right.
 - (i) Sketch the Free-body diagram (FBD) of acting forces on the box.
 - (ii) Find the work done by horizontal force, F.
 - (iii) Find the work done by frictional force, f.
 - (iv) Find the work done by gravitational force, $W_{\rm g}$.
 - (v) Find the total work done.

(12 marks)

- (b) Consider a ball rolling on a smooth surface as shown in **Figure Q4** (b).
 - (i) If the ball starts from rest at point A, calculate its speed at point B.
 - (ii) Find the initial velocity at point A if the ball reached the end point, C with a speed of 10 m.s⁻¹.

(8 marks)

Q5	(a)	Define Archimedes Principle. (2 marks)
	(b)	An aluminium sphere with a radius of 5 cm floats in water while 75% of its volume

- (b) An aluminium sphere with a radius of 5 cm floats in water while 75% of its volume submerged in the water. The density of aluminium and water are 2.7×10³ kg.m⁻³ and 1000 kg.m⁻³ respectively.
 - (i) Calculate the mass of the sphere.
 - (ii) Calculate the buoyant force acting on the sphere.
 - (iii) Calculate the buoyant force of the sphere when it is fully immersed in the water. (10 marks)
- (c) A 30 cm layer of oil floats on top of a water layer of 50 cm deep. Given the density of the oil is 600 kg.m⁻³, the density of water is 1000 kg.m⁻³ and the atmospheric pressure is 101×10³ Pa.
 - (i) Calculate the absolute pressure at the oil-water interface.
 - (ii) Calculate the absolute pressure at the bottom of the container.

(8 marks)

- Q6 (a) Define the terms below.
 - (i) Stress.
 - (ii) Strain.
 - (iii) Elasticity.

(6 marks)

(b) Two rectangular rods of 2.0 m long have a cross sectional area of 4 cm². One of them is a steel rod (Y = 20×10^{10} Pa) and another one is an aluminium rod (Y = 7×10^{10} Pa). Both rods are pressed by a milling machine with 1000 N of force. Compare which has the higher elongation between the two rods.

(8 marks)

- (c) A rectangular block of jelly has an original dimension of 10 cm x 10 cm x 3 cm when no force is applied to it. When a shear force of magnitude 0.45 N is applied to the upper surface of the block, the surface is displaced 0.9 cm relative to the fixed lower surface as shown in **Figure Q6 (c)**.
 - (i) Calculate the shear stress.
 - (ii) Calculate the shear strain.
 - (iii) Calculate the shear modulus of the jelly. PBUKA

(6 marks)

CONFIDENTIAL

DAK 13003

- Q7 (a) Convert the following temperature values.
 - (i) $-50 \circ F$ to $\circ C$.
 - (ii) 130 ° C to ° F.
 - (iii) $-293 \,^{\circ}$ C to $^{\circ}$ F.
 - (iv) 75 ° C to K.
 - (v) 80 K to ° C.

(10 marks)

(b) A certain amount of heat is added to a mass of aluminium and its temperature is raised by 50 K. Suppose that the same amount of heat is added to the same mass of a copper. Calculate how much does the copper temperature raise? Given that $C_{Al} = 0.90$ kJ/(kg.K) and $C_{Cu} = 0.585$ kJ/(kg.K).

(6 marks)

- (c) A copper rod has a length of 9.00 cm at 25 ° C (α copper = $17x10^{-6}$ / ° C).
 - (i) Calculate the new rod length when it is placed in a boiling water.
 - (ii) Calculate required temperature to make the rod length to be 9.03 cm.

(4 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER/SESSION : SEM I/ SESSION 2019/2020

COURSE NAME

: PHYSICS FOR ENGINEERING

TECHNOLOGY

PROGRAMME: DAK

COURSE CODE: DAK 13003

F The state of the

Figure Q4(a)

0.9 cm 3 cm

Figure Q6 (c)

10 cm

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/ SESSION 2019/2020 **COURSE NAME**

: PHYSICS FOR ENGINEERING

TECHNOLOGY

PROGRAMME: DAK

COURSE CODE: DAK 13003

List of formula

$$\rho = \frac{m}{V}$$

$$W \xrightarrow{N} E$$

$$S$$

$$|R| = \sqrt{\sum R_x^2 + \sum R_y^2}$$

$$\tan \theta = \frac{\sum R_y}{\sum R_x}$$

$$\Sigma F = \Sigma m \times a$$

$$f = \mu N$$

$$W = mg$$

$$g = 9.81 \text{ m.s}^{-2}$$

$$W = Fd$$

$$W = Fs$$

$$PE = mgh = Joule$$

$$KE = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

$$PE = KE$$

$$F_B = \rho_f V_{obj} g$$

$$W = \rho_{obj} V_{obj} g$$

$$V_{sphere} = \frac{4}{3}\pi r^3$$

$$P = \frac{F}{A}$$

$$P = P_{atm} + \rho g h$$

$$Stress, \sigma = \frac{F}{A}$$

$$Strain, \varepsilon = \frac{\Delta L}{L_0}$$

$$Y = \frac{\sigma}{\varepsilon}$$

$$\sigma s = \frac{F}{A}$$

$$\varepsilon s = \frac{\Delta x}{y}$$

$$S = \frac{\sigma s}{\varepsilon s}$$

$$T_F = 1.8 T_C - 32$$

$$T_K = T_C + 273.15$$

$$Q = mC_p \Delta T$$

$$L = L_o(1 + \alpha \Delta T)$$