

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2009/2010

SUBJECT	:	CHEMISTRY
CODE	:	DSK 1912
COURSE	:	1 DEE / DET 3 DEE/DET
DATE	:	APRIL 2010
DURATION	:	2 ¹ / ₂ HOURS
INSTRUCTION	:	ANSWER ALL QUESTIONS IN PART A AND FOUR (4) QUESTIONS IN PART B

THIS EXAMINATION PAPER CONSISTS OF 6 PAGES

DSK 1912

PART A

Q1 (a) Define an acid and a base according to the theory of Brønsted-Lowry.

(2 marks)

(b) Rewrite **Table Q1(b)** in your answer script and complete the table.

		~ .	-	
Tabl	0	()1	(h)	
Tabl		U1	(1)	

Acid	Conjugate base	Base	Conjugate acid
H ₂ S	?	S ²⁻	?
<u>?</u>	PH ₃	<u>?</u>	H ₂ SO ₃

(2 marks)

(c) Milk of magnesia, Mg(OH)₂ has a pH of 10.5. Find the hydroxonium and hydroxide ion concentration. $(K_w = 1.0 \times 10^{-14})$

(4 marks)

(d) Piperidine, C₅H₁₁N, a nitrogen-containing base, analogous to ammonia has a $K_b = 1.3 \times 10^{-3}$. Calculate the pH of a 0.15 M solution of piperidine.

(7 marks)

- Q2 (a) Determine the oxidation number of the underlined elements in the following compounds.
 - (i) $\underline{Cr_2}O_7^{2-}$
 - (ii) $K\underline{Mn}O_4$
 - (iii) $NaH\underline{C}O_3$

(5 marks)

(b) A voltaic cell is assembled as follows :

 $Cd(s) + Fe^{2+} (aq) \longrightarrow Cd^{2+} (aq) + Fe(s)$

- (i) Write the half cell reactions at the anode and cathode.
- (ii) Calculate the standard emf, E_{cell}^{o} of this reaction at 298K.
- (iii) Calculate E_{cell} using Nernst equation given that $[Cd^{2+}] = 0.010$ M and $[Fe^{2+}] = 0.60$ M.

Given : $E^{\circ}_{Fe}^{2^{+}/Fe} = -0.44 \text{ V}$ $E^{\circ}_{Cd}^{2^{+}/Cd} = -0.40 \text{ V}$

(10 marks)

DSK 1912

Q3	(a)	Complete the reaction and name the product formed from the reaction of 2-hexene with : (i) Br ₂ (ii) HBr
		(ii) HBr (4 marks)
	(b)	Name the type of reaction for the formation of pentane from 2-pentyne and write appropriate equations for the reaction.

(3marks)

(c) Give two examples of functional groups using suitable examples named according to IUPAC.

(3 marks)

PART B

Q4 (a) Find the percent composition of N and O in ammonium nitrate, NH_4NO_3 . (Relative atomic mass : N = 14, O = 16)

(3 marks)

(b) Air bags fitted in vehicles are filled with nitrogen from the decomposition of sodium azide, NaN₃.

 $NaN_3(s) \rightarrow Na(s) + N_2(g)$

- (i) Balance the above equation.
- (ii) Calculate the mass of NaN₃ needed to produce 60.0 L of N₂ at 760 mmHg and 26°C.

(Relative atomic mass : Na = 23, N = 14, R = 0.0821 L.atm/mol.K) (9 marks)

(c) A newly discovered gas has a density of 2.39 g/L at 23C and a pressure of 0.94 atm. What is the molar mass of the gas?

(3 marks)

Q5 (a) List all possible subshell and orbitals associated with the principal quantum number n = 6.

(2 marks)

(b) The atomic number of an element is 33. Is the element diamagnetic or paramagnetic? Why?

(4 marks)

(c) Compare the radius of the following atoms based on their effective nuclear charge (Z_{eff}): Lithium, Beryllium and Boron. Which atom has largest and smallest radius. (5 marks) DSK 1912

	(d)	(i) (ii)	Write the electron configuration of beryllium. Write the equation representing the first, second and third ionization of beryllium.	n energy
			(Atomic number, Z: $Li = 3$; $Be = 4$; $B= 5$)	(4 marks)
Q6	(a)		be an ionic and a pure covalent bond using LiF and F_2 as examples. ic number, $Z : Li = 3$, $F = 9$)	(5 marks)
	(b)	Draw a	all possible resonance structures for the molecule dinitrogen oxide,	N ₂ O. (6 marks)
	(c)	(i) (ii)	What is a dative/coordinate covalent bond? Show the formation of this bond using suitable example.	(4 marks)
Q7	(a)	Given	the thermochemical equation for the combustion of isooctane, C_8H	18.
		$2C_8H_1$	$_{8}(\ell) + 25O_{2}(g) \rightarrow 16CO_{2}(g) + 18H_{2}O(\ell), \Delta H^{o} = -10,992.0 \text{ kJ}$	
		Write (i) (ii)	the thermochemical equation for the production of 4 mol $CO_2(g)$ combustion of 100 mol isooctane, C_8H_{18} .	(4 marks)
	(b)	Given	the following equation :	
		8CO ₂ ((g) + 9H ₂ O(g) \rightarrow C ₈ H ₁₈ (ℓ) + $\frac{25}{2}O_2(g)$, $\Delta H^o = 5116.0 \text{ kJ}$	
			H_{f}^{o} of isooctane, C ₈ H ₁₈ from the following data.	
		2	$CO_2(g) = -393.5 \text{ kJ/mol}$ $H_2O(g) = -241.8 \text{ kJ/mol}$	
)		(5 marks)
	(c)		iron is obtained from iron ore, an important reaction is conversion ΔH for the following thermochemical equation to calculate ΔH for the following thermochemical equation to calculate ΔH for the following thermochemical equation to calculate ΔH for the following thermochemical equation to calculate ΔH for the following thermochemical equation to calculate ΔH for the following the follow	
			$2Fe_3O_4(s) \rightarrow 6FeO(s) + O_2(g)$	
			+ 2O ₂ (g) \rightarrow Fe ₃ O ₄ (s), $\Delta H^o = -1118.4 \text{ kJ}$ + $\frac{1}{2}$ O ₂ (g) \rightarrow FeO(s), $\Delta H^o = -272.0 \text{ kJ}$	

(6 marks)

Q8 (a) The reaction between fluorine and chlorine dioxide is as follows:

 $F_2(g) + 2ClO_2(g) \longrightarrow 2FClO_2(g)$

From the following data collected, determine:

- (i) Rate law
- (ii) Rate constant, k.

[F ₂] M	[ClO ₂] M	Rate reaction (M/s)
0.10	0.010	1.2 X 10 ⁻³
0.10	0.040	4.8 X 10 ⁻³
0.20	0.010	2.4 X 10 ⁻³
	0.10 0.10	0.10 0.010 0.10 0.040

(10 marks)

(b) The rate constant for a second-order reaction is 7.0×10^9 /M.s at 10° C.

 $2\text{NOBr}(g) \longrightarrow 2\text{NO}(g) + \text{Br}_2(g)$

(i) Starting with a concentration of 0.086 M. Calculate the concentration of NOBr after 2 minutes.

(ii) Calculate the half life when $[NOBr]_0 = 0.072 \text{ M}.$

(5 marks)

Q9

(a) Write the equilibrium expression K_c and/or K_p for the following equation:

 $\frac{1}{8}S_8(s) + O_2(g) \implies SO_2(g)$

(2 marks)

(b) K_c for the reaction : $2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$ is 3.2×10^{81} at $25^{\circ}C$. Calculate K_p . (R = 0.0821 L.atm/mol.K)

(4 marks)

(c) $CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g), K_c = 4 \text{ at } 500 \text{ K}$ 1.0 mol CO and 1.0 mol H₂O are allowed to react in a 1.0 L flask. Calculate the equilibrium concentrations of CO, H₂O, CO₂ and H₂.

(7 marks)

(d) The equilibrium constant K_c for the following reaction is 0.16 at 25°C, and the standard enthalpy change is 16.1 kJ.

 $2 \operatorname{NOBr}(g) \longrightarrow 2 \operatorname{NO}(g) + \operatorname{Br}_2(\ell)$

Predict how the equilibrium position would change if

- (i) more $Br_2(\ell)$ is added to the system
- (ii) temperature of the system is lowered.

(2 marks)