

THIS EXAMINATION PAPER CONSISTS OF 5 PAGES

PART A

Q1 (a) Evaluate the line integral

 $\int y \sin z \, ds$

along the helix C that is represented by the parametric equations $x = \cos t$, $y = \sin t$, z = t ($0 \le t \le 2\pi$).

(10 marks)

(b) Use Green's Theorem to evaluate

 $\oint_C y^3 dx + (x^3 + 3xy^2) dy$ where C is the circle $x^2 + y^2 = 9$ oriented counter clockwise.

(10 marks)

Q2 (a) Use Gauss's Theorem to find the flux of the vector field F(x, y, z) = xi + 2yj + zkacross surfaces σ of the solid G enclosed by the planes 2x + 2y + z = 6, x = 0, y = 0 and z = 0 oriented upward.

(10 marks)

(b) Use Stokes' Theorem to evaluate the work done by the force field $\mathbf{F}(x, y, z) = xz \mathbf{i} + xy \mathbf{j} + 3xz \mathbf{k}$

along the curve C where C is the intersection between the cylinder $x^2 + y^2 = 1$ and the plane y + z = 5 oriented counterclockwise.

(10 marks)

PART B

Q3 (a) Find the local minimum and saddle point(s) of the function $f(x, y) = x^4 + y^4 - 4xy + 1.$

(8 marks)

(b) Use the total differential dz to approximate the change in $z = x^2y - 2xy - 6$ as (x, y) moves from the point (0,3) to the point (-0.07,2.98).

(6 marks)

(c) Find the tangent plane of the surface $f(x, y) = \sqrt{4 - x^2 - 2y^2}$ at the point (1, -1, 1).

(6 marks)

Q4 (a) Sketch the solid enclosed by the hemisphere $z = \sqrt{9 - x^2 - y^2}$, below by the plane z = 0 and inside the cylinder $x^2 + y^2 = 4$. Sketch its projection on the xy-plane. Find the moment of inertia of the solid about z -axis. Given that the density function is $\delta(x, y, z) = z$.

(10 marks)

(b) Find the volume of the solid bounded above by the sphere $x^2 + y^2 + z^2 = 4z$ and below by the cone $z = \sqrt{x^2 + y^2}$ using triple integrals in spherical coordinates. (10 marks)

- Q5 (a) Suppose that a particle moves along a circular helix such that its position at time t is given by a vector valued function $\mathbf{r}(t) = \sin t \mathbf{i} + 2t \mathbf{j} + \cos t \mathbf{k}$.
 - (i) Find the unit tangent vector T(t).
 - (ii) Find the unit normal vector N(t).
 - (iii) Sketch the graph of $\mathbf{r}(t)$, for $0 \le t \le 2\pi$.

(12 marks)

(b) Assume that the velocity of a moving particle is $\mathbf{v}(t) = (t+2)\mathbf{i} + t^2\mathbf{j} + e^{-t/3}\mathbf{k}$ and the position at t = 0 is $\mathbf{r}(0) = 4\mathbf{i} - 3\mathbf{k}$. Find the particle position at t = 1. (8 marks)

Q6 (a) Use Green's Theorem to evaluate

$$\int_{C} y^3 dx + (x^3 + 3xy^2) dy$$
,

where C consists of the line segment C_1 from (2,0,0) to (3,4,5) followed by the vertical line segment C_2 from (3,4,5) to (3,4,7).

(10 marks)

(b) Given a force field

$$\mathbf{F}(x, y) = (3x^2 + 6xy^2)\mathbf{i} + (6x^2y + 4y^2)\mathbf{j}$$

acting on a particle moving along curve C from point A(1,0) to point B(0,1).

- (i) Show that **F** is conservative.
- (ii) Find a potential function $\phi(x, y)$.
- (ii) Hence, find the work done by force field \mathbf{F} .

(10 marks)

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2009/2010

COURSE : BFF/BEE/BDD

: BSM 2913

SUBJECT : ENGINEERING MATHEMATICS III CODE

Formulae

Polar coordinate: $x = r \cos \theta$, $y = r \sin \theta$, $\theta = \tan^{-1}(y/x)$, and $\iint_R f(x, y) dA = \iint_R f(r, \theta) r dr d\theta$ **Cylindrical coordinate:** $x = r \cos \theta$, $y = r \sin \theta$, z = z, $\iiint_G f(x, y, z) dV = \iiint_G f(r, \theta, z) r dz dr d\theta$ Spherical coordinate: $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z - \rho \cos \phi$, $x^2 + y^2 + z^2 = \rho^2$, $0 < \theta < 2\pi$, $0 < \phi < \pi$, and $\iiint_G f(x, y, z) dV = \iiint_G f(\rho, \phi, \theta) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$ Directional derivative: $D_{u} f(x, y) = (f_{x}i + f_{y}j) u$ Let $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is vector field, then the divergence of $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial \mathbf{r}} + \frac{\partial N}{\partial v} + \frac{\partial P}{\partial z}$ the curl of $\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z}\right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \mathbf{k}$ Let C is a smooth curve given by $\mathbf{r}(t) = \mathbf{x}(t)\mathbf{i} + \mathbf{y}(t)\mathbf{j} + \mathbf{z}(t)\mathbf{k}$, t is parameter, then $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{u}'(t)\|}$ the unit tangent vector: $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$ the unit normal vector: $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$ the binormal vector: $\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$ the curvature: the radius of curvature: $\rho = 1/\kappa$ **Green Theorem:** $\oint_C M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$ **Gauss Theorem:** $\iint_{S} \mathbf{F} \bullet \mathbf{n} \, dS = \iiint_{G} \nabla \bullet \mathbf{F} \, dV$ Stokes' Theorem: $\oint_C \mathbf{F} \bullet d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \bullet \mathbf{n} \, dS$ Arc length If $\mathbf{r}(t) = \mathbf{x}(t)\mathbf{i} + \mathbf{y}(t)\mathbf{j}$, $t \in [a, b]$, then the arc length $s = \int_{a}^{b} \|\mathbf{r}'(t)\| dt = \int_{a}^{b} \sqrt{[\mathbf{x}'(t)]^{2} + [\mathbf{y}'(t)]^{2}} dt$ If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, $t \in [a,b]$, then the arc length $s = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt$

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2009/2010

COURSE : BFF/BEE/BDD

SUBJECT : ENGINEERING MATHEMATICS III

CODE : BSM 2913

Tangent Plane $z-z_0 = f_x(x_0, y_0)(x-x_0) + f_y(x_0, y_0)(y-y_0)$

Extreme of two variable functions

 $G(x, y) = f_{xx}(x, y)f_{yy}(x, y) - (f_{xy}(x, y))^{2}$ Case 1: If G(a, b) > 0 and $f_{xx}(x, y) < 0$ then f has local maximum at (a, b)Case 2: If G(a, b) > 0 and $f_{xx}(x, y) > 0$ then f has local minimum at (a, b)Case 3: If G(a, b) < 0 then f has a saddle point at (a, b)Case 4: If G(a, b) = 0 then no conclusion can be made.

In 2-D: Lamina

Mass: $m = \iint_{D} \delta(x, y) dA$, where $\delta(x, y)$ is a density of lamina.

Moment of mass: (i) about y-axis, $M_y = \iint_R x \delta(x, y) dA$, (ii) about x-axis, $M_x = \iint_R y \delta(x, y) dA$

Centre of mass, $(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$ Moment inertia: (i) $I_y = \iint_R x^2 \delta(x, y) dA$, (ii) $I_x = \iint_R y^2 \delta(x, y) dA$, (iii) $I_o = \iint_R (x^2 + y^2) \delta(x, y) dA$

In 3-D: Solid

Mass, $m = \iiint_G \delta(x, y, z) dV$. If $\delta(x, y, z) = c$, c is a constant, then $m = \iiint_G dA$ is volume. Moment of mass

- (i) about yz-plane, $M_{yz} = \iiint_G x \delta(x, y, z) dV$
- (ii) about xz -plane, $M_{xz} = \iiint_G y \delta(x, y, z) dV$
- (iii) about xy-pane, $M_{xy} = \iiint z \delta(x, y, z) dV$

Centre of gravity,
$$(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$$

Moment inertia

(i) about x-axis:
$$I_x = \iiint_G (y^2 + z^2) \delta(x, y, z) dV$$

(ii) about y-axis:
$$I_y = \iiint_G (x^2 + z^2) \delta(x, y, z) dV$$

(iii) about z-axis:
$$I_z = \iiint_G (x^2 + y^2) \delta(x, y, z) dV$$