CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESI 2011/2012

COURSE NAME	:	STATISTICS FOR MANAGEMENT
COURSE CODE	:	BSM 1823
PROGRAMME	:	4BPA/ 4BPB
EXAMINATION DATE	:	JANUARY 2012
DURATION	:	3 HOURS
INSTRUCTION	:	ANSWER ALL QUESTIONS

THIS EXAMINATION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

Q1. Table Q1 presents the probability distribution function of the number of drums X ordered by a randomly chosen customer.

Table Q1: Probability Distribution Function of X	

		x	1	2	3	4	5		
		p(x)	0.4	k	0.2	0.1	0.1		
Find									
(a)	the value	e of k if _l	<i>p</i> (x) is p	orobal	bility d	istribut	ion funct	ion.	(3 marks)
(b)	P(X < 3)								(5 marks)
	- ()								(3 marks)
(c)	$P(X \ge 2)$	•							(2
(d)	the mear	number	r of dru	ms oi	rdered				(3 marks)
(u)	the mean	i numoei	ui ui ui u	1115 01	ucicu.				(5 marks)
(e)	the varia	nce of th	ne num	ber of	drums	ordere	d.		. ,
									(6 marks)

Q2 (a) A sample of five items is drawn from a large lot in which 10% of the items are defective. Find

- (i) the probability that none of the sampled items are defective.
- (ii) the probability that exactly one of the sampled items is defective.
- (iii) the probability that one or more of the sampled items are defective.

(10 marks)

- (b) Assume that the number of hits on a certain website during a fixed time interval follows a Poisson distribution. Assume that the mean rate of hits is 5 per minute. Find
 - (i) the probability that there will be exactly 5 hits in the next one minute.
 - (ii) the probability that there will be at least 2 hits in the next one minute.
 - (iii) the probability that there will be exactly 17 hits in the next three minutes.

(10 marks)

BSM 1823

Q3. A computer system administrator notices that computers run in a particular operating system seem to freeze up more often as the installation of the operating system ages. He measure the time (in minutes) before freeze-up for five computers one month after installation and for six computers seven month after installation. The results are as in **Table Q3**.

Table Q3: Time (in minutes) before freeze-up the computers after installation

One month after	20.74	23.31	21.59	23.51	22.56	
installation						
Seven month after	18.43	25.32	22.73	20.13	23.74	24.62
installation						

(a) Find a 95% confidence interval for the mean of time before freeze-up for one month after installation.

(5 marks)

- (b) Conclude that at the 5% level that the variance of time freeze-up for one month after installation and seven month after installation is different. (8 marks)
- (c) Find a 95% confidence interval for the difference between mean time one month after installation and seven month after installation.

(7 marks)

Q4 In a test that is designed to measure the effect of a certain additive (in %) on the drying time (in hour) of a paint, the data is given in **Table Q4**.

Table Q4: Data on concentration of additive (X) and drying time (Y)

Concentration of additive (X)	Drying time (Y)
10.000	8.0400
14.000	9.9600
5.000	5.6800
8.000	6.9500
9.000	8.8100
12.000	10.8400
4.000	4.2600
7.000	4.8200
11.000	8.3300
13.000	7.5800
6.000	7.2400

A summary of the data	is given as below:	
$\Sigma X = 99.0000;$	$\Sigma Y = 82.5100;$	$\Sigma X^2 = 1001.0000;$
$\Sigma Y^2 = 660.1727;$	$\Sigma XY = 797.6000$	

(a) Construct the scatter plot of drying time (Y) versus additive concentration (X). Verify there is a linear relationship between drying time (Y) and additive concentration (X).

(3 marks)

(b) Compute the least-squares line for predicting drying time from additive concentration. Interpret your result.

(6 marks)

(c) Predict the drying time for concentration of 4.4%.

(2 marks)

- (d) For what concentration would you predict a drying time of 8.2 hours? (2 marks)
- (e) Calculate the coefficient of determinations (*r* square) and interpret your result.

(4 marks)

(f) Can least-squares line be used to predict the drying time for a concentration of 20%. If so, predict the drying time. If not, explain why not.

(3 marks)

Q5 (a) A study was done to investigate the tensile strength of parachutes produced by suppliers. The analysis of variance was performance using *SPSS* and the results is given in **Table Q5 (a)**.

Source of variation	Sum of	Degree of	Mean	F value
	squares	freedom	square	
Between groups	A	3	<i>C</i>	E
Within groups	45.648	В	D	
Total	47.418	19		

Table Q5 (a): Table of analysis of variance

(i) Determine the values of A, B, C, D and F.

(2.5 marks)

(ii) At the 0.05 level of significance, is there evidence of a difference in the mean tensile strength?

BSM 1823

(7 marks)

(b) You are conducting an experiment with one factor containing four groups, with four values in each group. For the ANOVA summary table as shown in **Table Q5 (b)**, fill in all the missing values.

Source of variation	Sum of	Degree of freedom	Mean	F value
Determine	squares	L	square	
Between groups	<u>a</u>	0	00	<u> </u>
Within groups	560	d	e]
Total	f	g		

Table Q5 (b): Table of analysis of variance

(i) Determine the values of a, b, c, d, e, f and g.

(3.5 marks)

(ii) At the 0.05 level of significance, is there evidence of a difference in the mean cost between four groups?

(7 marks)

FINAL EXAMINATION

Formulae

SEMESTER / SESSION: SEM I / 2011/2012

COURSE: 4 BPA/ 4 BPB

SUBJECT : STATISTICS FOR MANAGEMENT

CODE: BSM1823

$$\begin{split} & \frac{1}{\sum_{n=\infty}^{\infty} P(x_{r}) = 1, \quad E(X) = \sum_{\forall i} x \cdot P(x), \quad E(X^{2}) = \sum_{\forall x} x^{2} \cdot P(x), \quad \int_{-\infty}^{\infty} f(x) \, dx = 1, \\ & E(X) = \int_{-\infty}^{\infty} x \cdot P(x) \, dx, \quad E(X^{2}) = \int_{-\infty}^{\infty} x^{2} \cdot P(x) \, dx, \\ & Var(X) = E(X^{2}) - [E(X)]^{2}. \\ & \text{Special Probability Distributions :} \\ & P(x = r) = {}^{\sigma}C_{r} \cdot p^{r} \cdot q^{n-r}, r = 0, 1, ..., n, \quad X \sim B(n, p), \\ & P(X = r) = {}^{\sigma-r} \cdot \mu^{r}, \quad r = 0, 1, ..., \infty, \quad X \sim P_{0}(\mu), \quad Z = \frac{X - \mu}{\sigma}, \quad Z \sim N(0, 1), \\ & X \sim N(\mu, \sigma^{2}). \\ & \text{Sampling Distributions :} \\ & \overline{X} \sim N(\mu, \sigma^{2}/n), \quad Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1), \quad T = \frac{\overline{x} - \mu}{s/\sqrt{n}}, \quad \overline{x}_{1} - \overline{x}_{2} \sim N\left(\mu_{1} - \mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}\right). \\ & \text{Estimations :} \\ & n = \left(\frac{Z_{a/2} \cdot \sigma}{E}\right)^{2}, \quad \left(\frac{x_{1} - \overline{x}_{2}}{n_{1}}\right) - Z_{a/2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < \left(\frac{x_{1} - \overline{x}_{2}}{n_{1}}\right) + Z_{a/2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}, \\ & \left(\frac{\overline{x}_{1} - \overline{x}_{2}}{n_{2}}\right) - t_{a/2,v} \cdot S_{r} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} < \mu_{1} - \mu_{2} < \left(\frac{\overline{x}_{1} - \overline{x}_{2}}{n_{1} + n_{2}}\right) + t_{a/2,v} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}, \\ & \left(\frac{\overline{x}_{1} - \overline{x}_{2}}{n_{1}}\right) - t_{a/2,v} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} < \mu_{1} - \mu_{2} < \left(\frac{\overline{x}_{1} - \overline{x}_{2}}{n_{1} + n_{2}}\right) + t_{a/2,v} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}, \\ & (\overline{x}_{1} - \overline{x}_{2}) - t_{a/2,v} \sqrt{\frac{1}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < \left(\frac{\overline{x}_{1} - \overline{x}_{2}}{n_{1} + n_{2}}\right) + t_{a/2,v} \sqrt{\frac{1}{n_{1}} (s_{1}^{2} + s_{2}^{2})} \text{ with } v = 2(n-1), \\ & \left(\frac{\overline{x}_{1} - \overline{x}_{2}}{n_{1}} - t_{a/2,v} \sqrt{\frac{1}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}} < \sigma^{2} < \frac{(n-1)s^{2}}{x_{1-a/2,v}}} + t_{a/2,v} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} \text{ with} \\ & v = \frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}^{2}}{n_{1}}, \quad \frac{(n-1) \cdot s^{2}}{x_{a/2,v}^{2}}} < \sigma^{2} < \frac{(n-1) \cdot s^{2}}{x_{1-a/2,v}^{2}}} \text{ with } v = n-1, \\ & v = \frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{1}^{2}}{n_{2}}\right)^{2}}{n_{1}^{2}}, \quad \frac{(n-1) \cdot s^{2}}{x_{a/2,v}^{2}}} < \sigma^{2} < \frac{(n-1) \cdot s^{2}}{x_{1-a/2,v}^{2$$

6

BSM 1823

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2011/2012 COURSE: 4 BPA/ 4 BPB

SUBJECT : STATISTICS FOR MANAGEMENT

CODE: BSM1823

$$\begin{split} \frac{s_1^2}{s_2^2} \cdot \frac{1}{f_{\alpha/2}(v_1, v_2)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} \cdot f_{\alpha/2}(v_2, v_1) \text{ with } v_1 = n_1 - 1 \text{ and } v_2 = n_2 - 1. \\ \text{Hypothesis Testing:} \\ Z &= \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}, T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \text{ with } v = n_1 + n_2 - 2, \\ S_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \\ Z &= \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{n}(s_1^2 + s_2^2)}}, S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \\ T &= \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \text{ with } v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\sqrt{\frac{1}{n}(s_1^2 + s_2^2)}}, Z^2 &= \frac{(n - 1)s^2}{n_1 + n_2 - 2} \\ T &= \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \text{ with } v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}, Z^2 &= \frac{(n - 1)s^2}{\sigma^2} \\ T &= \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \text{ with } v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}, Z^2 &= \frac{(n - 1)s^2}{\sigma^2} \\ T &= \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \text{ with } v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{(\frac{s_1^2}{n_1} + \frac{s_2}{n_2}\right)^2}, Z^2 &= \frac{(n - 1)s^2}{\sigma^2} \\ Simple Linear Regressions : \\ S_{sy} &= \sum x_i y_i - \frac{\sum x_i \cdot \sum y_i}{n}, S_{sx} = \sum x_i^2 - \frac{(\sum x_i)^2}{n}, S_{sy} = \sum y_i^2 - \frac{(\sum y_i)^2}{n}, \overline{x} = \frac{\sum x}{n}, \\ \overline{y} &= \frac{\sum y_i}{n}, \hat{\beta}_1 = \frac{S_{sy}}{S_{sx}}, \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}, y = \hat{\beta}_0 + \hat{\beta}_1 x, r = \frac{S_{sy}}{\sqrt{S_{sx} \cdot S_{sy}}}, \\ SSE &= S_{yy} - \hat{\beta}_1 S_{sy}, MSE = \frac{SSE}{n - 2}, T = \frac{\hat{\beta}_1 - \beta_1^*}{\sqrt{\frac{MSE}{S_{sx}}}} \sim t_{n-2}, T = \frac{\hat{\beta}_0 - \beta_0}{\sqrt{MSE}\left(\frac{1}{n} + \frac{\overline{x}}{S_{sx}}\right)} \\ w_1 + w_2 &= \frac{(n_1 + n_2)(n_1 + n_2 + 1}{2}; u_1 = w_1 - \frac{n_1(n_1 + 1)}{2}; u_2 = w_2 - \frac{n_1(n_1 + 1)}{2} \end{bmatrix}$$

$$h = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{r_i^2}{n_i} - 3(n+1); r_s = 1 - 6 \sum \frac{d_i^2}{n(n^2 - 1)}$$