CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2011/2012

COURSE NAME

COURSE CODE

ENGINEERING MATHEMATICS II

:

:

:

PROGRAMME

EXAMINATION DATE

DURATION

INSTRUCTION

BSM 1933

4 BEE :

: **JANUARY 2012**

> : **3 HOURS**

> > ANSWER ALL QUESTIONS IN PART A AND THREE (3) QUESTIONS IN PART B

THIS EXAMINATION PAPER CONSISTS OF 7 PAGES

PART A

Q1 (a) Obtain the half-range cosine series for

$$f(x) = \pi - x, \ 0 < x < \pi.$$

Expand the first three nonzero terms.

(10 marks)

(b) Using the definition of Fourier transform to find the Fourier transform of the following function.

$$f(t) = \begin{cases} t, & 0 < t < 1 \\ 0, & \text{otherwise.} \end{cases}$$

(5 marks)

(c) By using linearity and time shift, calculate the Fourier transform of

$$f(t) = 5e^{-3t}H(t-1) + 7e^{-3(t-2)}H(t-2).$$

[Hint:

Time shift for Fourier transform: If $\mathcal{F}{f(t)} = F(\omega)$, then for any constant number a, $\mathcal{F}{f(t-a)} = e^{-i\omega a}F(\omega)$.] (5 marks)

Q2 Given a second order ordinary differential equation

$$y''-y=e^{2x}$$

Assume that the solution for the differential equation is $y(x) = \sum_{m=0}^{\infty} c_m x^m$.

(a) Find y'(x) and y''(x).

(2 marks)

(b) Expand the series up to x^3 in each summation, and by comparing coefficients of x^0, x^1, x^2 and x^3 , show that the solution is

$$y(x) = c_0 \left[1 + \frac{x^2}{2} + \frac{x^4}{4!} + \cdots \right] + c_1 \left[x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots \right] + \left[\frac{x^2}{2} + \frac{x^3}{3} + \frac{5x^4}{24} + \frac{x^5}{12} + \cdots \right].$$

[Hint: $e^{2x} = \sum_{m=0}^{\infty} \frac{(2x)^m}{m!}$]

(13 marks)

(c) Given the initial conditions for the differential equation are y(0) = 2 and y'(0) = 6. Find the particular series solution.

(5 marks)

PART B

Q3

(a) Using the substitutions x = X + 3 and y = Y - 1, show that the equation $\frac{dy}{dx} = \frac{2x-3y-9}{3x+5y-4}$

> can be reduced to a homogeneous equation. Hence, find the solution of the original equation.

> > (13 marks)

Given the R-L circuit with source of emf, E(t) as in Figure Q3 (b) below. (b)

Figure Q3 (b)

The circuit has inductance L = 5 H, resistance $R = 15 \Omega$, electromotive force E(t) = 10 V and i(t) A is the current flowing in the circuit. The initial current is i_0 .

Show that the mathematical model for the R-L circuit is given by (i)

$$\frac{di(t)}{dt} + 3i(t) = 2.$$

(ii) Find the current, i(t), flowing in the circuit at time t.

(7 marks)

Given a LC-circuit in Figure Q4 with L = 4 H, C = 0.01 F, which is connected to a source Q4 of voltage $E(t) = 400 \sin 5t$ V.

Figure Q4

Show that the *LC*-circuit can be modelled by $i'' + 25 i = 500 \cos 5t$. (a)

(3 marks)

Find the general solution to the second-order differential equation in (a). (b)

(10 marks)

(c) Given when t = 0, the charge, q(0) = -1, show that i'(0) = 25.

(2 marks)

(d) Find the particular solution to the second-order differential equation in (a) if the current is zero when t = 0.

(5 marks)

Q5 Given the network circuit in Figure Q5 below.

Q6

(a) Show that the network circuit can be modeled by the following system of first-order differential equation

$$\binom{i_1'}{i_2'} = \begin{pmatrix} -5 & 2\\ -2 & 0 \end{pmatrix} \binom{i_1}{i_2} + \begin{pmatrix} 100\sin(2t)\\ 40\sin(2t) \end{pmatrix}.$$
(4 marks)

(b) Find the general solution to the above system of first-order differential equation by using method of undetermined coefficients.

(16 marks)

(a) Prove that

$$\mathcal{L}^{-1}\left[\frac{1-e^{-10s}}{(3s+1)(s+1)}\right] = \left[\frac{1}{2}e^{-\frac{1}{3}t} - \frac{1}{2}e^{-t}\right] - \left[\frac{1}{2}e^{-\frac{1}{3}(t-10)} - \frac{1}{2}e^{-(t-10)}\right]H(t-10).$$
(10 marks)

(b) Figure Q6 (b) below shows an *RLC* circuit with L = 3 H, $R = 4 \Omega$, and C = 1 F which is initially at rest. A power source of 5V is applied to the circuit for the first 10 seconds. After 10 seconds, the power source is removed.

Figure Q6 (b)

(i) Show the *RLC* circuit can be governed by

•

$$3\frac{di}{dt} + 4i + \int_0^t i(\tau) d\tau = 5[1 - H(t - 10)].$$

(ii) Using the answer in Q6 (a), find the current i(t) in the circuit at any time t.

(10 marks)

FINAL EXAMINATION				
SEMESTER / SESSION: SEM I / 2011/2012	PROGRAMME :	4 BEE		
SUBJECT : ENGINERRING MATHEMATICS II	CODE :	BSM 1933		
Formulae				
Second-order Differential Equation The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.				

Characteristic equation: $am^2 + bm + c = 0$.				
Case	The roots of characteristic equation	General solution		
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1 x} + Be^{m_2 x}$		
2.	Real and equal roots: $m = m_1 = m_1$	m_2 $y = (A + Bx)e^{mx}$		
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$-\beta i y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$		

The method of undetermined coefficients for system of first order linear differential equations For non-homogeneous for system of first order linear differential equations $\mathbf{Y}'(x) = A \mathbf{Y}(x) + \mathbf{G}(x)$, the particular solution $\mathbf{Y}_p(x)$ is given by:

$\mathbf{G}(x)$	$\mathbf{Y}_{p}(\mathbf{x})$	$\mathbf{G}(\mathbf{x})$	$\mathbf{Y}_p(\mathbf{x})$
u	a	ue ^{<i>λx</i>}	$\mathbf{a}e^{\lambda x}$
$\mathbf{u}x + \mathbf{v}$	$\mathbf{a}x + \mathbf{b}$	$\mathbf{u}\cos\alpha x$ or $\mathbf{u}\sin\alpha x$	$a\sin\alpha x + b\cos\alpha x$

Laplace Transform				
$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$				
f(t)	F(s)	f(t)	F(s)	
a	$\frac{a}{s}$	$\int_0^t f(\tau)d\tau$	$\frac{F(s)}{s}$	
e ^{at}	$\frac{1}{s-a}$	H(t-a)	$\frac{e^{-as}}{s}$	
sin at	$\frac{a}{s^2 + a^2}$	f(t-a)H(t-a)	$e^{-as}F(s)$	
cosat	$\frac{s}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}	
sinh at	$\frac{a}{s^2-a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$	
cosh at	$\frac{s}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s) \cdot G(s)$	
$t^n, n = 1, 2, 3, \dots$	$\frac{n!}{s^{n+1}}$	<i>y</i> (<i>t</i>)	Y(s)	
$e^{at}f(t)$	F(s-a)	<i>y'(t)</i>	sY(s) - y(0)	
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$	y"(t)	$s^{2}Y(s) - sy(0) - y'(0)$	

BSM 1933

FINAL EXAMINATION					
	SEMESTER / SES	SION: SEM I / 2011/2012	PROGRAMME :	4 BEE	
	SUBJECT : ENGI	NERRING MATHEMATICS II	CODE :	BSM 1933	
		Electrical	Formula		
1.	Voltage drop a	cross resistor, R (Ohm's La	w): $v_R = iR$		
2.	2. Voltage drop across inductor, L (Faraday's Law): $v_L = L \frac{di}{dt}$				
3.	3. Voltage drop across capacitor, C (Coulomb's Law): $v_c = \frac{q}{C}$ or $i = C \frac{dv_c}{dt}$				
4.	4. The relation between current, <i>i</i> and charge, <i>q</i> : $i = \frac{dq}{dt}$.				
		Fourie	r Series		
Four	ier series expans	sion of periodic function	Half Range series		
with period $2L/2\pi$ $a_0 = \frac{1}{2} \int_{-\infty}^{L} f(x) dx$		$a_0 = \frac{2}{L} \int_0^L f(x) dx$			
$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{dx} dx$		$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$			
$\begin{vmatrix} u_n & L \mathbf{J}_{-L} \mathbf{J}(\mathbf{x}) \cos L & d\mathbf{x} \\ b_n = \frac{1}{L} \int_{-L}^{L} f(\mathbf{x}) \sin \frac{n\pi x}{2} d\mathbf{x} \end{vmatrix} \qquad b_n = -\frac{1}{L} \int_{-L}^{L} f(\mathbf{x}) \sin \frac{n\pi x}{2} d\mathbf{x}$			$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$	dx	
$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$		$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$			
	Т	able of Fourier Transforn	$\mathbf{n} \ \mathcal{F}\left\{f(t)\right\} = \int_{-\infty}^{\infty} f(t) e^{-i\omega t}$	dt	
	f(t)	$F(\omega)$	f(t)	$F(\omega)$	
	$\delta(t)$	1	$\operatorname{sgn}(t)$	$\frac{2}{i\omega}$	
	$\delta(t-\omega_0)$	$e^{-i\omega_0\omega}$	H(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$	
	1	$2\pi\delta(\omega)$	$e^{-\omega_0 t}H(t)$ for $\omega_0 > 0$	$\frac{1}{\omega_0 + i\omega}$	
	$e^{i\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$t^n e^{-\omega_0 t} H(t)$ for $\omega_0 > 0$	$\frac{n!}{(\omega_0 + i\omega)^{n+1}}$	
	$\sin(\omega_0 t)$	$i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$e^{-at}\sin(\omega_0 t)H(t)$ for $a > 0$	$\frac{\omega_0}{(a+i\omega)^2+\omega_0^2}$	
	$\cos(\omega_0 t)$	$\pi \big[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \big]$	$e^{-at}\cos(\omega_0 t)H(t)$ for $a > 0$	$\frac{a+i\omega}{(a+i\omega)^2+\omega_0^2}$	
S	$in(\omega_0 t)H(t)$	$\frac{\pi}{2}i[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$\left +\frac{\omega_0}{\omega_0^2-\omega^2}\right $		
C	$os(\omega_0 t)H(t)$	$\frac{\pi}{2} \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right]$	$\left +\frac{i\omega}{\omega_0^2-\omega^2}\right $		

7