CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2011/2012**

THIS EXAMINATION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

Q1 Let
$$
f(x, y) = \frac{4x^2y}{x^3 + y^3}
$$

\n(a) Find domain and range of $f(x)$, y .)

\n(2 marks)

\n(b) Determine whether $f(x)$ is point in the interval $f(x)$ or not. Give any reason.

\n(5 marks)

Q2 (a) Let
$$
W = x + y^2 + z^3
$$
, where $x = \ln rst$, $y = e^{-rs}$ and $z = rst$. Find W_s .
(5 marks)

 \bar{z}

(b) If
$$
z = \frac{x+y}{\sqrt{x^2+y^2}}
$$
, shows that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$. (5 marks)

Q3 Find the local extremums of the function

J.

 $\tilde{\gamma}$

$$
f(x, y) = 2x3 + y3 + 3x2 - 3y - 12x - 4.
$$
 (12 marks)

Q4 Use double integrals to find the surface area of $z = \sqrt{x^2 + y^2}$ that lies under the plane $z = 3$.

(7 marks)

 $\bar{}$

Q5 Line integral of $f(x, y, z)$ respects to arc length S around curve C, $\int_C f(x,y,z)dS$, can be used to compute the mass and centre of mass of a thin wire when f is assumed as a density of the wire.

Consider a wire with a shape of helix $x=2\cos t$, $y=2\sin t$, $z=t$ for $0 \le t \le$ 2π , and the density of the wire, $\delta(x, y, z) = 2$ at any point (x, y, z) .

By using line integral, find the mass and the centre of mass of this wire. Does the centre of the mass lies on the curve or the wire itself?

(11 marks)

- $Q6$ (a) Find a vector-valued function $r(t)$ that represents the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the plane $x + z = 1$.
	- (b) Find the unit tangent vector $T(t)$.

(7 marks)

- $Q7$ S be the sphere with radius 4, H is the hemisphere of S on positive value of z-axis and D is the disk $x^2 + y^2 \le 16$ in the xy-plane. G is the solid bounded by surfaces H and D oriented outward, and $F(x, y, z) = 2xi + 2yj + 5k$ is the vector field across the surface G.
	- (a) Write an equation of H as $z = f(x, y)$ and plot graph G.

(3 marks)

(b) Find f_x and f_y at point (2,2, $\sqrt{8}$) and gives its geometrical interpretation.

(6 marks)

- (c) From (b), find the directional derivative of f at point $(2,2,\sqrt{8})$ in the direction
	- (i) $\boldsymbol{a}=\boldsymbol{i}$
	- (ii) $\mathbf{b} = \mathbf{j}$
	- (iii) $c = i + j$

(5 marks)

- (d) Find the volume of G by using:
	- (i) double integral in cylindrical coordinate
	- (ii) triple integral in spherical coordinate

(7 marks)

(e) Show that the area of D is 16π unit² by using Green theorem to the line integral $\oint_C \frac{1}{2}(-ydx + xdy)$, where C is a simple closed path oriented counterclockwise given by D.

(4 marks)

- (f) Hence, from all above related results:
	- (i) Use Stoke's theorem to evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where C is the boundary of G in the xy-plane. What can you conclude?
	- (ii) Verify the Gauss theorem

(21 marks)

 $\ddot{}$

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2011/2012 COURSE : BFF/BEE/BDD

SUBJECT: ENGINEERING MATHEMATICS III CODE : BWM20403/BSM 2913

Tangent Plane

$$
z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)
$$

Extreme of two variable functions

 $G(x, y) = f_{xx}(x, y)f_{yy}(x, y) - (f_{xy}(x, y))^2$ Case1: If $G(a,b) > 0$ and $f_{xx}(x, y) < 0$ then f has local maximum at (a,b) Case2: If $G(a,b) > 0$ and $f_{xx}(x, y) > 0$ then f has local minimum at (a,b) Case3: If $G(a,b) < 0$ then f has a saddle point at (a,b) Case4: If $G(a,b) = 0$ then no conclusion can be made.

In 2-D: Lamina

Mass: $m = \iint \delta(x, y) dA$, where $\delta(x, y)$ is a density of lamina.

Moment of mass: (i) about y-axis, $M_y = \iint_R x\delta(x,y)dA$, (ii) about x-axis, $M_x = \iint_R y\delta(x,y)dA$

Centre of mass,
$$
(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)
$$

Moment inertia: (i) $I_y = \iint x^2 \delta(x, y) dA$, (ii) $I_x = \iint y^2 \delta(x, y) dA$, (iii) $I_o = \iint (x^2 + y^2) \delta(x, y) dx$. R In 3-D: Solid

Mass, $m = \iiint \delta(x, y, z)dV$. If $\delta(x, y, z) = c$, c is a constant, then $m = \iiint dA$ is volume. \dddot{G}

Moment of mass

(i) about
$$
yz
$$
-plane, $M_{yz} = \iiint_G x \delta(x, y, z) dV$

(ii) about xz-plane,
$$
M_{xz} = \iiint_G y \delta(x, y, z) dV
$$

(iii) about *xy*-panel,
$$
M_{xy} = \iiint z \delta(x, y, z) dV
$$

Centre of gravity,
$$
(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)
$$

Moment inertia

(i) about x-axis:
$$
I_x = \iiint_G (y^2 + z^2) \delta(x, y, z) dV
$$

(ii) about y-axis:
$$
I_y = \iiint_G (x^2 + z^2) \delta(x, y, z) dV
$$

(iii) about z-axis:
$$
I_z = \iiint_G (x^2 + y^2) \delta(x, y, z) dV
$$