

# UNIVERSITI TUN HUSSEIN ONN MALAYSIA

## FINAL EXAMINATION SEMESTER I SESSION 2012/2013

| COURSE NAME                                    | : | ENGINEERING MATHEMATICS IV                                              |
|------------------------------------------------|---|-------------------------------------------------------------------------|
| COURSE CODE                                    | : | BWM 30602                                                               |
| PROGRAMME                                      | : | 2 BEE<br>3 BEE                                                          |
| EXAMINATION DATE                               | : | JANUARY 2013                                                            |
| DURATION                                       | : | 2 HOURS AND 30 MINUTES                                                  |
| INSTRUCTION                                    | : | ANSWER ALL QUESTIONS                                                    |
|                                                |   | ALL CALCULATIONS AND ANSWERS<br>MUST BE IN THREE (3) DECIMAL<br>PLACES. |
|                                                |   |                                                                         |
|                                                |   |                                                                         |
| THE OUTSTICLE APER CONSIGNED OF FOUR (A) DACES |   |                                                                         |

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

Q1 (a) Find the root of  $\sin(2x) + x^3 - 3 = 0$  by using secant method at the interval [1, 2]. Iterate until  $|f(x_i)| < \varepsilon = 0.005$ .

(12 marks)

(b) Given the system of linear equations

$$6x_1 - 2x_2 + x_3 = 11$$
  
- 2x<sub>1</sub> + 7x<sub>2</sub> + 2x<sub>3</sub> = 5  
x<sub>1</sub> + 2x<sub>2</sub> - 5x<sub>3</sub> = -1

Solve the above system by using Gauss-Seidel iteration method up to 4 iterations only.

(13 marks)

Q2 (a) Given matrix A defined by

$$A = \begin{bmatrix} 4 & 2 & 0 \\ 1 & 4 & 2 \\ 0 & 1 & 4 \end{bmatrix}$$

Find the dominant eigenvalue and its corresponding eigenvector for matrix A by using power method. Use initial guess for eigenvector,  $v^{(0)} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ . Calculate until  $|m_{k+1} - m_k| < 0.005$ .

(15 marks)

(b) Find the approximate value of  $\int_{0}^{1} \frac{4}{1+x^2} dx$  by using  $\frac{1}{3}$  Simpson's rule with step size, h = 0.1.

(10 marks)

Q3 (a) Apply fourth-order Runge-Kutta method (RK4) to solve the following initial value problem

$$\frac{dy}{dx} = -2x - y, \ 0 \le x \le 0.3$$

with initial value y(0) = -1 and step size, h = 0.1.

(10 marks)

(b) Solve the boundary-value problem of

$$y'' - \left(1 - \frac{x}{5}\right)y = x$$
,  $y(1) = 2$  and  $y(3) = -1$ 

by using the finite-difference method with grid size,  $h = \Delta x = 0.5$ .

(15 marks)

Q4 (a) Let u(x,t) be the displacement of uniform wire which is fixed at both ends along x-axis at time t. The distribution of u(x,t) is given by the wave equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, \ 0 < x < 1, \ t > 0$$

with the boundary conditions u(0,t) = u(1,t) = 0 and the initial conditions  $u(x,0) = \sin 4\pi x$ ,  $\frac{\partial u}{\partial t}(x,0) = 0$  for  $0 \le x \le 1$ . Solve the wave equation up to level t = 0.1 by using finite-difference method with  $\Delta x = h = 0.25$  and  $\Delta t = k = 0.1$ . (10 marks)

(b) Given the heat equation  $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ , 0 < x < 1, and t > 0 with the boundary conditions  $u(0,t) = 20t^2$ , u(1,t) = 10t and the initial condition u(x,0) = x(1-x). Solve the heat equation up to level t = 0.3 by using finite-difference method with  $\Delta x = h = 0.5$  and  $\Delta t = k = 0.1$ .

(15 marks)

#### **END OF QUESTION** -

-

### FINAL EXAMINATION

SEMESTER / SESSION: SEM I/ 2012/2013 COURSE: ENGINEERING MATHEMATICS IV

PROGRAMME: 2/3 BEE CODE : BWM 30602

#### **FORMULAS**

Secant method

Secant method 
$$x_{i+2} = \frac{x_i f(x_{i+1}) - x_{i+1} f(x_i)}{f(x_{i+1}) - f(x_i)}, i = 0, 1, 2, 3, ...$$
  
Gauss-Seidel iteration method  $x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}}{a_{ii}}, i = 1, 2, ..., n$ 

Lagrange polynomial

$$P_n(x) = \sum_{i=0}^n L_i(x) f(x_i), i = 0, 1, 2, ..., n \text{ where } L_i(x) = \prod_{\substack{j=0\\j \neq i}}^n \frac{(x-x_j)}{(x_i - x_j)}$$

3-point central difference:  $f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$ 

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Simpson's 
$$\frac{1}{3}$$
 rule:  $\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[ f_0 + f_n + 4 \sum_{\substack{i=1 \ i \text{ odd}}}^{n-1} f_i + 2 \sum_{\substack{i=2 \ even}}^{n-2} f_i \right]$ 

Power Method  $v^{(k+1)} = \frac{1}{m_{k+1}} A v^{(k)}, \quad k = 0, 1, 2, ...$ 

Classical 4<sup>th</sup> order Runge-Kutta method.  $y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$  $k_2 = hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$ where  $k_1 = hf(x_i, y_i)$  $k_3 = hf(x_i + \frac{h}{2}, y_i + \frac{k_2}{2})$   $k_4 = hf(x_i + h, y_i + k_3)$ 

Boundary value problems

$$y'_i \approx \frac{y_{i+1} - y_{i-1}}{2h}, \qquad y''_i \approx \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$$

Finite difference method:

$$\left(\frac{\partial^2 u}{\partial t^2}\right)_{i,j} = \left(c^2 \frac{\partial^2 u}{\partial x^2}\right)_{i,j} \qquad \Leftrightarrow \qquad \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2} = c^2 \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} \\ \frac{\partial u(x,0)}{\partial t} = \frac{u_{i,j+1} - u_{i,j-1}}{2k} = g(x_i) \\ \left(\frac{\partial u}{\partial t}\right)_{i,j} = \left(c^2 \frac{\partial^2 u}{\partial x^2}\right)_{i,j} \qquad \Leftrightarrow \qquad \frac{u_{i,j+1} - u_{i,j}}{k} = c^2 \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}$$